Advances in Metal Complex-Catalyzed Oxidation of Alkanes

Authors

  • Chenhao Li
  • Xiaoli Zhang

DOI:

https://doi.org/10.54691/sezs8y60

Keywords:

Metal Complexes; Alkanes; Catalytic Oxidation Reactions.

Abstract

With the development of green chemistry, metal complex-catalyzed oxidation of alkanes (linear and cyclic) has emerged as a key strategy for the efficient conversion of inert C(sp³)–H bonds. This review summarizes recent advances in the selective oxidation of alkanes under mild conditions using metal complexes (e.g., Cu, Fe, Co, Ni), with a focus on ligand design and its regulatory effects on catalytic activity and selectivity. These systems employ radical or metal-oxo intermediate pathways, utilizing green oxidants such as H₂O₂ or O₂, significantly reducing energy consumption and byproduct formation. The study provides an efficient and sustainable catalytic approach for the valorization of petroleum resources (e.g., nylon monomer synthesis), contributing to the advancement of green chemical engineering. Future research should further optimize catalyst stability and recyclability while exploring biomimetic and multimetallic cooperative catalytic systems.

Downloads

Download data is not yet available.

References

[1] Lane M K M, Rudel H E, Wilson J A, et al. Green chemistry as just chemistry[J]. Nature Sustainability, 2023, 6(5): 502-512.

[2] Shah A A, Sharma K, Haider M S, et al. The Role of Catalysts in Biomass Hydrothermal Liquefaction and Biocrude Upgrading[J]. 2022, 10(2): 207.

[3] Hitomi Y, Arakawa K, Funabiki T, et al. An Iron(III)–Monoamidate Complex Catalyst for Selective Hydroxylation of Alkane C-H Bonds with Hydrogen Peroxide[J]. Angew Chem Int Ed, 2012, 51(14): 3448-3452.

[4] Zheng R, Liu Z, Wang Y, et al. Industrial catalysis: Strategies to enhance selectivity[J]. Chinese Journal of Catalysis, 2020, 41(7): 1032-1038.

[5] Labinger J A, Bercaw J E. Understanding and exploiting C–H bond activation[J]. Nature, 2002, 417(6888): 507-514.

[6] del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials[J]. Chemical Society Reviews, 2021, 50(15): 8511-8595.

[7] Buvaylo E A, Kokozay V N, Vassilyeva O Y, et al. Copper(II) complex of the 2-pyridinecarbaldehyde aminoguanidine Schiff base: Crystal structure and catalytic behaviour in mild oxidation of alkanes[J]. Inorg Chem Commun, 2017, 78: 85-90.

[8] Silva A R, Mourão T, Rocha J. Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands[J]. Catalysis Today, 2013, 203: 81-86.

[9] Kundu S, Thompson J V K, Shen L Q, et al. Activation Parameters as Mechanistic Probes in the TAML Iron(V)–Oxo Oxidations of Hydrocarbons[J]. Chemistry A European Journal, 2015, 21(4): 1803-1810.

[10] Thomas J M, Raja R, Sankar G, et al. Molecular Sieve Catalysts for the Regioselective and Shape- Selective Oxyfunctionalization of Alkanes in Air[J]. Accounts of Chemical Research, 2001, 34(3): 191-200.

[11] Yin M, Zhang Z, Xiong Y, et al. Ethylene/1-Hexene Copolymerization with Modified Ziegler-Natta Catalyst[J]. Chemical Research in Chinese Universities, 2019, 35(6): 1089-1094.

[12] Borah K D, Bhuyan J. Magnesium porphyrins with relevance to chlorophylls[J]. Dalton Transactions, 2017, 46(20): 6497-6509.

[13] Shukla P, Das S, Bag P, et al. Magnetic materials based on heterometallic CrII/III–LnIII complexes[J]. Inorganic Chemistry Frontiers, 2023, 10(15): 4322-4357.

[14] Li R, Xu F-F, Gong Z-L, et al. Thermo-responsive light-emitting metal complexes and related materials[J]. Inorganic Chemistry Frontiers, 2020, 7(18): 3258-3281.

[15] Fu H L-K, Yam V W-W. Supramolecular Metallogels of Platinum(II) and Gold(III) Complexes[J]. Chem Lett, 2018, 47(5): 605-610.

[16] Bruffaerts J, Kesten I, Buhnik-Rosenblau K, et al. Selective Terminal Functionalization of Linear Alkanes[J]. Angew Chem Int Ed, 2023, 62(30): e202306343.

[17] Kachbouri S, Elaloui E, Charnay C. Synthesis and characterization of a new silica nanoparticles using APG/CTAB as modified agent[J]. J Sol-Gel Sci Technol, 2022, 103(1): 39-49.

[18] Wu H, Yin S, Du Y, et al. Alkyl-Functionalized Boron Nitride Nanosheets as Lubricant Additives[J]. ACS Applied Nano Materials, 2020, 3(9): 9108-9116.

[19] Sharley J S, Gambacorta G, Collado Pérez A M, et al. Further investigations into imine-mediated formation of allylic nitro compounds[J]. Tetrahedron, 2022, 126: 133058.

[20] Bose S, Pariyar A, Biswas A N, et al. Electron deficient manganese(III) corrole catalyzed oxidation of alkanes and alkylbenzenes at room temperature[J]. Catalysis Communications, 2011, 12(13): 1193-1197.

[21] Ferreira G K B, Castro K A D d F, Machado G S, et al. Manganese porphyrin in solution and heterogenized in different materials mediates oxidation of hydrocarbons by iodosylbenzene[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 263-272.

[22] Guengerich F P. Mechanisms of Cytochrome P450-Catalyzed Oxidations[J]. ACS Catalysis, 2018, 8(12): 10964-10976.

[23] Banerjee R, Jones J C, Lipscomb J D. Soluble Methane Monooxygenase[J]. 2019, 88(Volume 88, 2019): 409-431.

[24] Soobramoney L, Bala M D, Friedrich H B. Flexible pincer backbone revisited: CuSNS complexes as efficient catalysts in paraffin oxidation[J]. Inorganica Chimica Acta, 2021, 526: 120508.

[25] Mao S, Verspeek D, Wen X, et al. Homogeneous Iron-Catalysed Oxidation Of Non-Activated Alkanes With Hydrogen Peroxide[J]. ChemCatChem, 2023, 15(19): e202300735.

[26] Mncube S G, Bala M D. Application of 1,2,3-triazolylidene nickel complexes for the catalytic oxidation of n-octane[J]. Molecular Catalysis, 2020, 482: 100107.

[27] Das B, Al-Hunaiti A, Carey A, et al. A di‑iron(III) μ-oxido complex as catalyst precursor in the oxidation of alkanes and alkenes[J]. Journal of Inorganic Biochemistry, 2022, 231: 111769.

[28] Pennec A, Jacobs C L, Opperman D J, et al. Revisiting Cytochrome P450-Mediated Oxyfunctionalization of Linear and Cyclic Alkanes[J]. Adv Synth Catal, 2015, 357(1): 118-130.

[29] Roggan S, Limberg C, Ziemer B, et al. Intramolecular C-H Activation in Complexes with Mo Bi Metal Bonds[J]. Angew Chem Int Ed, 2004, 43(21): 2846-2849.

[30] Lee J Y, Oh B O, Cho H H, et al. Synthesis of Hydrophilic Polyamide Copolymers Based on Nylon 6 and Nylon 46[J]. Fibers and Polymers, 2019, 20(11): 2227-2235.

[31] Sheng Y, Yang R, Xie J, et al. Energy-Saving Ambient Electrosynthesis of Nylon-6 Precursor Coupled with Electrocatalytic Upcycling of Polyethylene Terephthalate[J]. Small, 2024, 20(47): 2404477.

[32] Cai Z, Liu D, Huang J, et al. Solvent-Free Production of ε-Caprolactone from Oxidation of Cyclohexanone Catalyzed by Nitrogen-Doped Carbon Nanotubes[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2037-2044.

[33] Nakamura T, Ito R, Sugimoto H, et al. Alkane hydroxylation by m-CPBA catalyzed by Co(II)-complexes[J]. Molecular Catalysis, 2025, 572: 114782.

[34] Shen H M, Wang X, Guo A B, et al. Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates[J]. J Porphyrins Phthalocyanines, 2020, 24(10): 1166-1173.

[35] Cheng J, Shiota Y, Yamasaki M, et al. Mechanistic Study for the Reaction of B12 Complexes with m-Chloroperbenzoic Acid in Catalytic Alkane Oxidations[J]. Inorganic Chemistry, 2022, 61(25): 9710-9724.

Downloads

Published

2025-04-21

Issue

Section

Articles

How to Cite

Li, C., & Zhang, X. (2025). Advances in Metal Complex-Catalyzed Oxidation of Alkanes. Scientific Journal of Technology, 7(4), 206-213. https://doi.org/10.54691/sezs8y60