Design of GaAs HBT VCO Based on Response Surface Method

Authors

  • Zhisen Li
  • Min Liu
  • Jincan Zhang
  • Kun Xu
  • Bowen Zhang
  • Tonghe Huang
  • Yiming Wang

DOI:

https://doi.org/10.54691/efzkgx86

Keywords:

Voltage Control Oscillator; GaAs HBT; Figure of Merit; Tuning Range; Phase Noise.

Abstract

In this paper, a differential cross-coupled Colpitts voltage control oscillator (VCO) based on 1 µm GaAs HBT technology is presented, and response surface method (RSM) is used to co-optimize the phase noise, center frequency, and tuning range of the VCO. The differential cross-coupled structure is used to provide negative resistance and the Colpitts structure is applied for achieving low phase noise. Then, we choose five parameters of the VCO circuit through establishing RSM model, in order to find the optimal combination of VCO circuit design parameters and to obtain the best performance. The results show that the frequency tuning range of VCO circuit is 11.59~15.39 GHz, the phase noise is -110.6 dBc/Hz at 1 MHz offset from center frequency of 13.49 GHz, the power consumption of the VCO core is 18.05 mW at 5.0 V supply voltage and the calculated figure of merit (FOM) is -189.628 dBc/Hz. The performance of the VCO is improved after the optimization of response surface method.

Downloads

Download data is not yet available.

References

[1] H. Lee, S. Jang, and Y. Chen, “Low phase noise buffe‐reused BiCMOS oscillator,” Microw Opt Technol Lett, vol. 63, no. 7, pp. 1881-1885, Jul. 2021, doi: 10.1002/mop.32867.

[2] L. Pantoli, S. Arena, and T. Cavanna, “Enhancing performance of a InGaP/GaAs VCO by means of a switching architecture,” Electron. Lett., vol. 54, no. 11, pp. 695-696, May 2018, doi: 10.1049/ el. 2018.0965.

[3] J. Zhang et al., “A Ku-band wide-tuning-range high-output-power VCO in InGaP/GaAs HBT technology,” J. Semicond., vol. 36, no. 6, p. 065010, Jun. 2015, doi: 10.1088/1674-4926/36/6/ 065010.

[4] J.-Y. Han, Y. Jiang, G.-L. Guo, and X. Cheng, “An evolution of Colpitts VCO for simultaneous optimization of phase noise and FoM in GaAs technologies,” Analog Integr. Circuits Process., vol. 105, no. 3, pp. 441-457, Dec. 2020, doi: 10.1007/s10470-020-01725-7.

[5] X. Xia, F. Chen, X. Cheng, J. Han, and X. Luo, “A GaAs Colpitts VCO Using gm -Boosting and Collector-Emitter Cross-Coupling Techniques,” IEEE Trans. Circuits Syst. II, vol. 67, no. 12, pp. 2873-2877, Dec. 2020, doi: 10.1109/TCSII.2020.2995957.

[6] X. Cheng, F.-J. Chen, X.-L. Xia, J.-A. Han, X.-H. Luo, and Z.-C. Zhao, “A Modified Darlington-Based Class-C VCO With Simultaneous Optimization of Phase Noise/FoM in GaAs Technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 5, pp. 500-503, May 2020, doi: 10.1109/LMWC.2020.2983845.

[7] S. Veni, P. Andreani, M. Caruso, M. Tiebout, and A. Bevilacqua, “Analysis and Design of a 17-GHz All- npn Push-Pull Class-C VCO,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2345-2355, Sep. 2020, doi: 10.1109/JSSC.2020.2991512.

[8] Z. Zhang, L. Liu, N. Qi, J. Liu, and N. Wu, “A 17.6-to-24.3 GHz -193.3 dB figure-of-merit LC voltage-controlled oscillator using layout floorplan optimization technique for Q-factor enhancement,” Jpn. J. Appl. Phys., vol. 59, no. SG, p. SGGL05, Apr. 2020, doi: 10.35848/1347-4065 /ab709c.

[9] G. K. Sharma, A. K. Johar, T. B. Kumar, and D. Boolchandani, “Effectiveness of Taguchi and ANOVA in design of differential ring oscillator,” Analog Integr Circ Sig Process, vol. 104, no. 3, pp. 331-341, Sep. 2020, doi: 10.1007/s10470-020-01671-4.

[10] Z. Chen, Y. Xu, C. Wang, Z. Wen, Y. Wu, and R. Xu, “A Large-Signal Statistical Model and Yield Estimation of GaN HEMTs Based on Response Surface Methodology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 690-692, Sep. 2016, doi: 10.1109/LMWC.2016.2597196.

[11] P. Hansdah, S. Kumar, and N. R. Mandre, “Performance optimization of dewatering of coal fine tailings using Box–Behnken design,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 1, pp. 75-80, Jan. 2018, doi: 10.1080/15567036.2017.1405112.

[12] J. kumar and T. Soota, “Multi-response optimization of machining parameter for Zircaloy by response surface methodology and grey relation analysis,” Materials Today: Proceedings, vol. 21, pp. 1544-1550, 2020, doi: 10.1016/j.matpr.2019.11.084.

[13] A. Zhang and J. Gao, “A new method for determination of PAD capacitances for GaAs HBTs based on scalable small signal equivalent circuit model,” Solid-State Electronics, vol. 150, pp. 45-50, Dec. 2018, doi: 10.1016/j.sse.2018.10.005.

[14] C. Florian, S. D’Angelo, D. Resca, and F. Scappaviva, “A chip set of low phase noise MMIC VCOs at C, X and Ku band in InGaP-GaAs HBT technology for satellite telecommunications,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, Jun. 2017, pp. 1148-1151. doi: 10.1109/MWSYM.2017.8058802.

[15] T. Yan, Y.-M. Zhang, H.-L. Lu, Y.-M. Zhang, and Y. Wu, “A K-band low phase noise and wide tuning range LC VCO,” in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, Oct. 2014, pp. 1-3. doi: 10.1109/ICSICT.2014.7021604.

[16] Y. Peng, H.-L. Lu, Y.-M. Zhang, and Y.-M. Zhang, “A K-band Low Phase Noise GaAs HBT vco,” in 2012 11th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Xi'an, China, Oct. 2012, pp. 1-3, doi: 10.1109/ICSICT.2012.6466692.

[17] D. Kuylenstierna, S. Lai, Mingquan Bao, and H. Zirath, “Design of Low Phase-Noise Oscillators and Wideband VCOs in InGaP HBT Technology,” IEEE Trans. Microwave Theory Techn., vol. 60, no. 11, pp. 3420-3430, Nov. 2012, doi: 10.1109/TMTT.2012.2216893.

Downloads

Published

2025-04-21

Issue

Section

Articles

How to Cite

Li, Z., Liu, M., Zhang, J., Xu, K., Zhang, B., Huang, T., & Wang, Y. (2025). Design of GaAs HBT VCO Based on Response Surface Method. Scientific Journal of Technology, 7(4), 132-142. https://doi.org/10.54691/efzkgx86