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Abstract	

Carbonate	 reservoirs	 are	 among	 the	most	 important	 carriers	 of	 global	 hydrocarbon	
resources.	However,	 the	 accurate	 identification	 and	 quantitative	 characterization	 of	
their	 core	 storage	 space—the	 fracture–cavity	 system—remain	 a	 long‐standing	 global	
challenge	 in	 petroleum	 exploration	 and	 development.	 Over	 the	 past	 decade,	 rapid	
advances	 in	 artificial	 intelligence	 (AI),	 particularly	machine	 learning	 (ML)	 and	 deep	
learning	 (DL),	 have	 provided	 transformative	 tools	 to	 address	 the	 characterization	
difficulties	arising	 from	 the	 strong	heterogeneity	and	multiscale	nature	of	 carbonate	
reservoirs.This	review	systematically	summarizes	the	applications	of	AI	technologies	in	
the	study	of	fracture–cavity	carbonate	reservoirs	from	2015	to	2025.	The	geological	and	
engineering	backgrounds,	as	well	as	the	necessity	of	introducing	AI	techniques,	are	first	
outlined.	 Taking	 technological	 evolution	 as	 the	 main	 thread,	 research	 progress	 is	
reviewed	from	traditional	machine	learning	to	deep	learning	and	further	to	intelligent	
methods	 based	 on	 multimodal	 data	 fusion.	 The	 review	 focuses	 on	 key	 research	
directions,	 including	 intelligent	 identification	 of	 fractures	 and	 cavities,	 parameter	
prediction,	 three‐dimensional	modeling,	 and	 data	 integration,	with	 an	 emphasis	 on	
methodologies	 and	 representative	 applications.	 Current	 challenges	 are	 discussed	 in	
depth	 from	 three	 core	 dimensions:	 data,	models,	 and	 knowledge‐driven	 constraints.	
Finally,	 future	 research	 trends	 are	 prospected,	 highlighting	 the	 path	 toward	
interpretable,	 strongly	 generalizable,	 high‐fidelity,	 and	 fully	 integrated	 intelligent	
workflows.	
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1. Introduction	

Carbonate reservoirs are characterized by the coexistence of complex pore–fracture–vug 
multiphase media. Their strong heterogeneity and anisotropy lead to highly irregular 
distributions of storage space and complicated fluid flow mechanisms (Zhang Chengsen et al., 
2011; Liang Qimin et al., 2023). Traditional fracture–cavity characterization methods, such as 
core description, well-log interpretation, and seismic attribute analysis, rely heavily on expert 
experience. When dealing with massive, high-dimensional, and nonlinear datasets, these 
methods often suffer from low efficiency and limited accuracy, making it difficult to meet the 
demands of fine-scale exploration and efficient development. Artificial intelligence (AI), 
particularly machine learning (ML) and deep learning (DL), offers novel solutions to these 
challenges owing to its powerful capabilities in data-driven modeling, complex pattern 
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recognition, and high-dimensional nonlinear mapping (Al-Obaidani et al., 2024). By 
automatically extracting deep features and hidden patterns from multi-source heterogeneous 
data—including seismic, logging, core, and production data—AI has driven a paradigm shift 
from “qualitative interpretation” to “quantitative prediction,” from “local description” to “three-
dimensional modeling,” and from “static characterization” to “dynamic forecasting.” Studies 
over the past decade have demonstrated that, under complex geological conditions, AI-based 
methods significantly outperform many traditional approaches in fracture–cavity identification 
(Zongjie Li et al., 2024), marking the transition of this field into a new stage of deep integration, 
refinement, and intelligence. 
During this evolution, the application of AI technologies has progressed from shallow machine 
learning models to deep neural networks and further toward specialized and integrated 
frameworks. Early studies primarily employed classical supervised learning algorithms—such 
as support vector machines (SVM), random forests (RF), gradient boosting decision trees 
(GBDT), and multilayer perceptrons (MLP)—for fracture identification, lithology classification, 
and preliminary prediction of porosity and permeability based on well-log data (Kouassi et al., 
2023; Pei et al., 2022). These works demonstrated the potential of data-driven models but 
showed limited capability in characterizing complex fracture–cavity structures. With advances 
in computational power and algorithmic theory, deep learning has become dominant. 
Convolutional neural networks (CNNs) and U-Net architectures have been widely applied to 
the automatic identification and quantitative extraction of fractures and vugs from image logs 
and core images (Zongjie Li et al., 2024), while recurrent neural networks (RNNs) and their 
variants, such as long short-term memory (LSTM) networks, have been used to process 
sequential well-log data and capture fracture–cavity development patterns (Liu B. et al., 2023). 
Current research trends emphasize specialization, lightweight design, and data fusion. 
Improved YOLO-series algorithms have enhanced both the accuracy and efficiency of fracture–
cavity system detection (Feng X. et al., 2024). Generative adversarial networks (GANs) and 
variational autoencoders (VAEs) are increasingly adopted for data augmentation and high-
resolution reconstruction (Yuslandi et al., 2019). Meanwhile, physics-informed neural 
networks (PINNs) and multimodal deep learning frameworks aim to integrate physical 
equations, geological constraints, and multi-source information, thereby improving model 
generalization, interpretability, and the comprehensiveness of reservoir characterization 
(Ketineni et al., 2015; Hussein S., 2025). 
 
Table	1. Applications of Artificial Intelligence in Fracture–Cavity Identification of Carbonate 

Reservoirs 

Stage Key Technologies Application Areas Representative Studies 

Early 
exploration 

Support vector machines, 
random forests, 

multilayer perceptrons 

Fracture identification, lithology 
classification, preliminary 

parameter prediction 

Kouassi et al., 2023; 
Pei et al., 2022 

Advanced 
development CNN,U-Net,LSTM,RNN 

Image log and core image 
recognition, sequential data 

modeling 

Zongjie Li et al., 2024; 
Liu B et al., 2023 

Frontier 
breakthroughs 

YOLO series, GAN, PINN, 
multimodal fusion 

Fracture–cavity system localization, 
data augmentation, physics-

constrained modeling, multi-source 
integration 

Feng X et al., 2024; 
Ketineni et al., 2015; 

Hussein, 2025 
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2. Characteristics	and	Challenges	of	Fracture–Cavity	Carbonate	Reservoirs	

2.1. Characteristics	of	Fracture–Cavity	Carbonate	Reservoirs	
Carbonate fracture–cavity reservoirs are characterized by extreme complexity and pronounced 
heterogeneity, making their accurate characterization a central challenge in hydrocarbon 
exploration and development (Wang Yan et al., 2023). These reservoirs are not simple porous 
media but rather a “multiphase medium” system in which macroscopic vugs, microscopic pores, 
and fractures of various scales coexist (Wu Yunlong et al., 2025). Their highly irregular spatial 
structures result in dramatic variations in storage capacity and fluid flow properties over short 
distances, leading to exceptionally complex fluid migration mechanisms (Jun Yao et al., 2016). 

 
Table	2.	Key Characteristics of Fracture–Cavity Carbonate Reservoirs 

Characteristic Specific Manifestation Reference 

Complex storage 
space structure 

The storage space comprises a combination of pores, fractures, and 
vugs. For example, the Leikoupo Formation reservoirs in western 
Sichuan can be classified into pore-type, fracture–pore type, vug-

type, and fracture–pore–vug type. 

(TianH et al, 
2019) 

Extreme 
heterogeneity 

Reservoir properties vary sharply in space. In the Yingshan 
Formation of the Tazhong area, strong heterogeneity and 

compartmentalization are observed, controlled by multiple 
karstification events and tectonic activities. Fracture-dominated, 

vug-dominated, cavern-dominated, and composite storage units can 
be distinguished. 

(Pan, J.-G & Wei, 
2012) 

Multiscale and 
clustered 

distribution 

Fracture–cavity development spans from millimeter to meter scale. 
Spatially, they often appear in clusters or aggregations rather than 

being uniformly distributed. 
(Jun Yao, 2016) 

Controlled by 
multiple 

geological 
processes 

Mainly shaped by multi-stage paleo-karstification and subsequent 
tectonic fracturing. Paleogeomorphology, paleo-rivers, and fault 

zones control the spatial distribution of the fracture–cavity system. 

(Zhang 
Ying,2018; Pan, 

J.-G & Wei, 2012) 

2.2. Challenges	in	Characterizing	Fracture–Cavity	Carbonate	Reservoirs	
Geophysical	Resolution	 and	 Identification	Bottlenecks: Conventional seismic data have 
limited resolution, making it difficult to identify small fracture–cavity bodies with scales below 
15 m. Such small features often appear in seismic profiles as “weak beads,” low-amplitude 
anomalies, or chaotic reflections. The signals are subtle and easily masked by background noise. 
Advancing the detection scale from bead-level cavities (>20 m) to smaller and more concealed 
fracture–cavity assemblages is critical for improving recoverable reserves (Zhang Binxin et al., 
2024). 
Challenges	in	Multiscale	Information	Integration	and	Modeling: Fracture–cavity systems 
span multiple scales, from micro to macro. Single techniques—such as well logs, seismic 
surveys, or core analysis—only capture partial or scale-limited information, leaving “blind 
spots” in the dataset. The challenge lies in effectively integrating these heterogeneous, 
multiscale, and multi-type data to construct unified geological models. Purely data-driven or 
traditional interpolation methods struggle to accurately represent the spatial structure of 
fracture–cavity systems and their complex internal connectivity (Jun Yao et al., 2016). 
Transition	 from	 Qualitative	 Identification	 to	 Quantitative	 Characterization: Current 
techniques can macroscopically identify fracture–cavity bodies using features such as bead-like 
reflections. However, exploration and development require precise quantification of geometric 
shapes, boundaries, internal fillings, porosity, permeability, and other parameters—tasks that 
remain highly challenging. For example, quantitatively predicting fracture density or vug size 
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from seismic attributes while ensuring geologically reasonable results remains a frontier issue 
(Zhang Binxin et al., 2024). 
Theoretical	and	Computational	Challenges	 in	Fluid	Flow	Simulation: Due to the highly 
irregular geometry of fracture–cavity networks, fluid flow mechanisms are complex, involving 
coupled flow regimes such as Darcy flow in fractures and free flow in large vugs. Traditional 
numerical simulation theories based on continuous porous media are generally inapplicable. 
Multi-scale hybrid simulation approaches, such as discrete fracture–vug–network (DFVN) 
models and equivalent medium models, are required, posing significant challenges in 
mathematical modeling and computational solution (Jun Yao et al., 2016). 
Research on carbonate fracture–cavity reservoirs is transitioning from macroscopic qualitative 
identification to fine-scale characterization, intelligent integration of multi-source information, 
and geological-mechanism-constrained modeling. Future breakthroughs will depend on deeper 
interdisciplinary integration of geology, geophysics, reservoir engineering, and data science 
(Zhang Binxin et al., 2024; Jun Yao et al., 2016). 

3. Core	Research	Focus	

3.1. Intelligent	Identification	and	Detection	of	Fracture–Cavity	Systems	
The intelligent identification and detection of fracture–cavity systems represent the most direct 
and widely applied area of AI in carbonate reservoir studies. Research focus has evolved from 
identifying individual fractures or vugs to comprehensive detection and classification of 
complex fracture–pore–vug systems. 
Image‐based	 identification: Convolutional neural networks (CNNs), U-Net, and similar 
models are employed to process image logs and digital core images, enabling automatic 
identification of fracture types (e.g., high-conductivity vs. high-resistivity fractures), extraction 
of fracture parameters (dip, strike, aperture), and quantification of vug morphology and spatial 
distribution (Zongjie Li et al., 2024). For example, dedicated deep learning models such as 
MFAPNet have been developed for core CT images to achieve quantitative characterization of 
fractures and vugs (Ma, Y. S. et al., 2023). 
 

 
Figure	1. Network Architecture of the Improved 3D U-Net Model (Feng X. et al., 2024) 
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Well‐log‐based	 identification: Conventional well logs can be treated as one-dimensional 
time-series signals. Models such as 1D-CNN, LSTM, or Transformer networks are applied to 
automatically identify fracture–cavity-bearing intervals, reducing reliance on costly imaging 
logs (Al-Obaidani, H. S. et al., 2024). 
Seismic‐data‐based	 identification: Two-dimensional and three-dimensional CNNs, U-Net, 
and related architectures are used to directly detect fracture–cavity anomalies, faults, and 
fracture zones from seismic volumes or multiple seismic attribute datasets. These approaches 
enable planar and spatial prediction of inter-well fracture–cavity structures (Zongjie Li et al., 
2024; Feng X. et al., 2024). 

3.2. Intelligent	Prediction	of	Reservoir	Parameters	and	Fluid	Properties	
Porosity and permeability prediction: AI models establish complex mapping relationships 
between well-log data, seismic attributes, and porosity–permeability parameters obtained 
from core analysis. Compared with traditional statistical methods, deep learning models handle 
nonlinearities more effectively, achieving higher prediction accuracy in highly heterogeneous 
areas (Hou, J. et al., 2022). 
Quantitative prediction of fracture parameters: Fracture density, intensity, and porosity can be 
predicted using machine learning techniques. Multilayer perceptrons (MLPs) have been shown 
to perform effectively for such tasks. For instance, studies employing multi-source data fusion 
with MLP models have successfully predicted the spatial distribution of reservoir fracture 
parameters (Feng X. et al., 2024; Pei, J. et al., 2022). 
Fluid identification and hydrocarbon potential prediction: By integrating well logs, seismic data, 
and geological information, AI models—such as random forests and deep neural networks—
can distinguish reservoir fluid types (oil, gas, water) and evaluate reservoir productivity 
potential (Xiao Pengfei et al., 2020). 

 
Figure	2.	Bidirectional RNN – GeeksforGeeks (Mousavi S et al,2019) 

3.3. Multi‐Source	Information	Fusion	and	Integrated	Characterization	
Information from a single data source is limited, making multi-source data fusion a necessary 
approach to improve the reliability of reservoir characterization. AI plays a key role as both a 
“fusion engine” and a “decoder” in this process (Zhang Binxin et al., 2024). 
Well–seismic	joint	intelligent	characterization: Deep learning frameworks are constructed 
to simultaneously incorporate high-vertical-resolution information from well logs and lateral-
continuous information from seismic data. This allows joint inversion or prediction of the 
three-dimensional fine structure of fracture–cavity reservoirs, achieving an integrated “point–
plane–volume” representation (Zhang Binxin et al., 2024). 
Multiscale	data	fusion: Multiscale neural networks are designed to handle data ranging from 
microscopic core thin sections to macroscopic seismic scales, enabling unified characterization 
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of fracture–cavity systems from microstructure to macroscopic distribution (Ketineni, S. P. et 
al., 2015). 
Integration	of	geological	knowledge	and	data‐driven	models: Geological rules—such as 
depositional facies control and structural stress-field influence—are embedded into AI models 
as constraints, loss functions, or prior distributions. This “knowledge-enhanced” AI approach 
ensures that model outputs are not only data-driven but also geologically reasonable (Ketineni, 
S. P. et al., 2015). 

4. Research	Challenges	

4.1. Data‐Level	Challenges	
Data	scarcity	and	imbalance: High-quality, labeled fracture–cavity data—especially “positive 
samples” containing hydrocarbons—are costly to obtain, resulting in small and imbalanced 
training datasets. Deep learning models tend to overfit under limited samples, leading to poor 
generalization (Li Guohui et al., 2015). Generative adversarial networks (GANs) can be used to 
generate synthetic data to alleviate this problem, but the authenticity of generated data must 
be carefully evaluated. 
Heterogeneity	 and	 fusion	 difficulties	 of	multi‐source	 data: Seismic, well-log, core, and 
production data differ greatly in scale, resolution, and physical meaning. Designing effective 
network architectures and fusion mechanisms that allow AI models to truly understand and 
integrate heterogeneous information—rather than simply concatenating datasets—remains an 
unresolved challenge (Ketineni et al., 2015). 

4.2. Model‐Level	Challenges	
Model	 interpretability	 (“black‐box”	 problem): Complex deep learning models operate 
opaquely, making it difficult for geoscientists to understand why certain predictions are made. 
This poses a significant barrier in high-stakes exploration decisions (Feng X. et al., 2024). 
Developing explainable AI (XAI) approaches—such as attention mechanisms and feature 
importance analysis—is a current research focus and urgent need. 
Limited	model	generalization: Models trained in one field or under a specific depositional–
diagenetic context often perform poorly when applied to areas with different geological 
conditions (Alatefi, S. et al., 2023). Carbonate reservoirs are highly diverse (e.g., reef–shoal 
bodies, karst fracture–cavity systems), with distinct formation mechanisms and controlling 
factors, necessitating AI models with strong cross-field, cross-type transfer learning or adaptive 
capabilities. 
Physical	consistency	and	geological	plausibility: Purely data-driven models may produce 
mathematically optimal results that violate fundamental physical laws or geological 
knowledge—for example, predicting fracture orientations inconsistent with regional stress 
fields. Incorporating physical equations (e.g., flow and rock mechanics equations) and 
geological rules as hard or soft constraints into AI models—forming “physics-informed 
machine learning” or “geology-guided AI”—is key to improving model credibility and practical 
value (Ketineni et al., 2015). 

5. Conclusion	and	Future	Outlook	

Over the past decade, artificial intelligence has deeply penetrated the study of fracture–cavity 
carbonate reservoirs, from identification and parameter prediction to 3D modeling, 
significantly improving automation, intelligence, and quantitative accuracy. Research focus has 
shifted from applying off-the-shelf models to developing specialized intelligent algorithms that 
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integrate multi-source geological information. Future research is expected to advance along 
several directions: 
Few‐shot	and	self‐supervised	learning: To address the natural bottleneck of data scarcity, 
self-supervised learning can pretrain general feature representations on massive unlabeled 
datasets, followed by fine-tuning on limited labeled samples—a highly promising direction. 
Hybrid	intelligent	modeling	integrating	physics	and	data: Combining numerical solutions 
from physical simulators with data-driven models can create “digital-twin”-level reservoir 
agents, enabling a closed-loop workflow from static characterization to dynamic simulation and 
prediction. 
End‐to‐end	 integrated	 intelligent	 workflows: Developing AI platforms that cover data 
preprocessing, feature extraction, model training, 3D modeling, and risk analysis can advance 
fracture–cavity reservoir studies from “point intelligence” to “process intelligence.” 
Artificial intelligence is reshaping the paradigm of fracture–cavity carbonate reservoir research. 
Future success will depend on deep integration of geology, geophysics, and data science to 
tackle ultimate challenges in data, model, and knowledge fusion, ultimately achieving 
transparent reservoir understanding and intelligent hydrocarbon development 
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