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Abstract

Carbonate reservoirs are among the most important carriers of global hydrocarbon
resources. However, the accurate identification and quantitative characterization of
their core storage space—the fracture-cavity system—remain a long-standing global
challenge in petroleum exploration and development. Over the past decade, rapid
advances in artificial intelligence (Al), particularly machine learning (ML) and deep
learning (DL), have provided transformative tools to address the characterization
difficulties arising from the strong heterogeneity and multiscale nature of carbonate
reservoirs.This review systematically summarizes the applications of Al technologies in
the study of fracture-cavity carbonate reservoirs from 2015 to 2025. The geological and
engineering backgrounds, as well as the necessity of introducing Al techniques, are first
outlined. Taking technological evolution as the main thread, research progress is
reviewed from traditional machine learning to deep learning and further to intelligent
methods based on multimodal data fusion. The review focuses on key research
directions, including intelligent identification of fractures and cavities, parameter
prediction, three-dimensional modeling, and data integration, with an emphasis on
methodologies and representative applications. Current challenges are discussed in
depth from three core dimensions: data, models, and knowledge-driven constraints.
Finally, future research trends are prospected, highlighting the path toward
interpretable, strongly generalizable, high-fidelity, and fully integrated intelligent
workflows.
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1. Introduction

Carbonate reservoirs are characterized by the coexistence of complex pore-fracture-vug
multiphase media. Their strong heterogeneity and anisotropy lead to highly irregular
distributions of storage space and complicated fluid flow mechanisms (Zhang Chengsen et al,,
2011; Liang Qimin et al., 2023). Traditional fracture-cavity characterization methods, such as
core description, well-log interpretation, and seismic attribute analysis, rely heavily on expert
experience. When dealing with massive, high-dimensional, and nonlinear datasets, these
methods often suffer from low efficiency and limited accuracy, making it difficult to meet the
demands of fine-scale exploration and efficient development. Artificial intelligence (Al),
particularly machine learning (ML) and deep learning (DL), offers novel solutions to these
challenges owing to its powerful capabilities in data-driven modeling, complex pattern
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recognition, and high-dimensional nonlinear mapping (Al-Obaidani et al, 2024). By
automatically extracting deep features and hidden patterns from multi-source heterogeneous
data—including seismic, logging, core, and production data—AI has driven a paradigm shift
from “qualitative interpretation” to “quantitative prediction,” from “local description” to “three-
dimensional modeling,” and from “static characterization” to “dynamic forecasting.” Studies
over the past decade have demonstrated that, under complex geological conditions, Al-based
methods significantly outperform many traditional approaches in fracture-cavity identification
(Zongjie Li et al., 2024), marking the transition of this field into a new stage of deep integration,
refinement, and intelligence.

During this evolution, the application of Al technologies has progressed from shallow machine
learning models to deep neural networks and further toward specialized and integrated
frameworks. Early studies primarily employed classical supervised learning algorithms—such
as support vector machines (SVM), random forests (RF), gradient boosting decision trees
(GBDT), and multilayer perceptrons (MLP)—for fracture identification, lithology classification,
and preliminary prediction of porosity and permeability based on well-log data (Kouassi et al.,
2023; Pei et al., 2022). These works demonstrated the potential of data-driven models but
showed limited capability in characterizing complex fracture-cavity structures. With advances
in computational power and algorithmic theory, deep learning has become dominant.
Convolutional neural networks (CNNs) and U-Net architectures have been widely applied to
the automatic identification and quantitative extraction of fractures and vugs from image logs
and core images (Zongjie Li et al.,, 2024), while recurrent neural networks (RNNs) and their
variants, such as long short-term memory (LSTM) networks, have been used to process
sequential well-log data and capture fracture-cavity development patterns (Liu B. et al., 2023).
Current research trends emphasize specialization, lightweight design, and data fusion.
Improved YOLO-series algorithms have enhanced both the accuracy and efficiency of fracture-
cavity system detection (Feng X. et al.,, 2024). Generative adversarial networks (GANs) and
variational autoencoders (VAEs) are increasingly adopted for data augmentation and high-
resolution reconstruction (Yuslandi et al, 2019). Meanwhile, physics-informed neural
networks (PINNs) and multimodal deep learning frameworks aim to integrate physical
equations, geological constraints, and multi-source information, thereby improving model
generalization, interpretability, and the comprehensiveness of reservoir characterization
(Ketineni et al., 2015; Hussein S., 2025).

Table 1. Applications of Artificial Intelligence in Fracture-Cavity Identification of Carbonate

Reservoirs
Stage Key Technologies Application Areas Representative Studies
Early Support vector machines, Fracturg i-den.tificatiop, llithology Kouassi et al,, 2023;
exploration random forests, classification, preliminary Pei et al. 2022
multilayer perceptrons parameter prediction N
Image log and core image Zongiie Li
ongjie Li et al.,, 2024;
difi‘llsnrcsgnt CNN,U-Net,LSTM,RNN recognition, sequential data LgllB ! 12023
p modeling uBetal,
Fracture-cavity system localization, )
Frontier YOLO series, GAN, PINN, data augmentation, physics- Fer.lg X .et al, 2024;
. . . . . Ketineni et al,, 2015;
breakthroughs multimodal fusion constrained modeling, multi-source :
. . Hussein, 2025
integration
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2. Characteristics and Challenges of Fracture-Cavity Carbonate Reservoirs

2.1. Characteristics of Fracture-Cavity Carbonate Reservoirs

Carbonate fracture-cavity reservoirs are characterized by extreme complexity and pronounced
heterogeneity, making their accurate characterization a central challenge in hydrocarbon
exploration and development (Wang Yan et al., 2023). These reservoirs are not simple porous
media but rather a “multiphase medium” system in which macroscopic vugs, microscopic pores,
and fractures of various scales coexist (Wu Yunlong et al., 2025). Their highly irregular spatial
structures result in dramatic variations in storage capacity and fluid flow properties over short
distances, leading to exceptionally complex fluid migration mechanisms (Jun Yao et al., 2016).

Table 2. Key Characteristics of Fracture-Cavity Carbonate Reservoirs

Characteristic Specific Manifestation Reference
The storage space comprises a combination of pores, fractures, and
Complex storage vugs. For example, the Leikoupo Formation reservoirs in western (TianH et al,
space structure Sichuan can be classified into pore-type, fracture-pore type, vug- 2019)

type, and fracture-pore-vug type.

Reservoir properties vary sharply in space. In the Yingshan
Formation of the Tazhong area, strong heterogeneity and
Extreme compartmentalization are observed, controlled by multiple (Pan, J.-G & WEei,
heterogeneity karstification events and tectonic activities. Fracture-dominated, 2012)
vug-dominated, cavern-dominated, and composite storage units can
be distinguished.

Multiscale and Fracture-cavity development spans from millimeter to meter scale.
clustered Spatially, they often appear in clusters or aggregations rather than (Jun Yao, 2016)
distribution being uniformly distributed.
Conmtlrl?gile{ie by Mainly shaped by multi-stage paleo-karstification and subsequent (Zhang
geologli)cal tectonic fracturing. Paleogeomorphology, paleo-rivers, and fault Ying,2018; Pan,

processes zones control the spatial distribution of the fracture-cavity system. | ].-G & Wei, 2012)

2.2. Challenges in Characterizing Fracture-Cavity Carbonate Reservoirs

Geophysical Resolution and Identification Bottlenecks: Conventional seismic data have
limited resolution, making it difficult to identify small fracture-cavity bodies with scales below
15 m. Such small features often appear in seismic profiles as “weak beads,” low-amplitude
anomalies, or chaotic reflections. The signals are subtle and easily masked by background noise.
Advancing the detection scale from bead-level cavities (>20 m) to smaller and more concealed
fracture-cavity assemblages is critical for improving recoverable reserves (Zhang Binxin et al.,
2024).

Challenges in Multiscale Information Integration and Modeling: Fracture-cavity systems
span multiple scales, from micro to macro. Single techniques—such as well logs, seismic
surveys, or core analysis—only capture partial or scale-limited information, leaving “blind
spots” in the dataset. The challenge lies in effectively integrating these heterogeneous,
multiscale, and multi-type data to construct unified geological models. Purely data-driven or
traditional interpolation methods struggle to accurately represent the spatial structure of
fracture-cavity systems and their complex internal connectivity (Jun Yao et al., 2016).
Transition from Qualitative Identification to Quantitative Characterization: Current
techniques can macroscopically identify fracture-cavity bodies using features such as bead-like
reflections. However, exploration and development require precise quantification of geometric
shapes, boundaries, internal fillings, porosity, permeability, and other parameters—tasks that
remain highly challenging. For example, quantitatively predicting fracture density or vug size
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from seismic attributes while ensuring geologically reasonable results remains a frontier issue
(Zhang Binxin et al., 2024).

Theoretical and Computational Challenges in Fluid Flow Simulation: Due to the highly
irregular geometry of fracture-cavity networks, fluid flow mechanisms are complex, involving
coupled flow regimes such as Darcy flow in fractures and free flow in large vugs. Traditional
numerical simulation theories based on continuous porous media are generally inapplicable.
Multi-scale hybrid simulation approaches, such as discrete fracture-vug-network (DFVN)
models and equivalent medium models, are required, posing significant challenges in
mathematical modeling and computational solution (Jun Yao et al., 2016).

Research on carbonate fracture-cavity reservoirs is transitioning from macroscopic qualitative
identification to fine-scale characterization, intelligent integration of multi-source information,
and geological-mechanism-constrained modeling. Future breakthroughs will depend on deeper
interdisciplinary integration of geology, geophysics, reservoir engineering, and data science
(Zhang Binxin et al., 2024; Jun Yao et al., 2016).

3. Core Research Focus

3.1. Intelligent Identification and Detection of Fracture-Cavity Systems

The intelligent identification and detection of fracture-cavity systems represent the most direct
and widely applied area of Al in carbonate reservoir studies. Research focus has evolved from
identifying individual fractures or vugs to comprehensive detection and classification of
complex fracture-pore-vug systems.

Image-based identification: Convolutional neural networks (CNNs), U-Net, and similar
models are employed to process image logs and digital core images, enabling automatic
identification of fracture types (e.g., high-conductivity vs. high-resistivity fractures), extraction
of fracture parameters (dip, strike, aperture), and quantification of vug morphology and spatial
distribution (Zongjie Li et al., 2024). For example, dedicated deep learning models such as
MFAPNet have been developed for core CT images to achieve quantitative characterization of
fractures and vugs (Ma, Y. S. et al., 2023).
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Figure 1. Network Architecture of the Improved 3D U-Net Model (Feng X etal,, 2024)
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Well-log-based identification: Conventional well logs can be treated as one-dimensional
time-series signals. Models such as 1D-CNN, LSTM, or Transformer networks are applied to
automatically identify fracture-cavity-bearing intervals, reducing reliance on costly imaging
logs (Al-Obaidani, H. S. et al,, 2024).

Seismic-data-based identification: Two-dimensional and three-dimensional CNNs, U-Net,
and related architectures are used to directly detect fracture-cavity anomalies, faults, and
fracture zones from seismic volumes or multiple seismic attribute datasets. These approaches

enable planar and spatial prediction of inter-well fracture-cavity structures (Zongjie Li et al.,
2024; Feng X. et al., 2024).

3.2. Intelligent Prediction of Reservoir Parameters and Fluid Properties

Porosity and permeability prediction: Al models establish complex mapping relationships
between well-log data, seismic attributes, and porosity-permeability parameters obtained
from core analysis. Compared with traditional statistical methods, deep learning models handle
nonlinearities more effectively, achieving higher prediction accuracy in highly heterogeneous
areas (Hou, J. et al., 2022).

Quantitative prediction of fracture parameters: Fracture density, intensity, and porosity can be
predicted using machine learning techniques. Multilayer perceptrons (MLPs) have been shown
to perform effectively for such tasks. For instance, studies employing multi-source data fusion
with MLP models have successfully predicted the spatial distribution of reservoir fracture
parameters (Feng X. et al,, 2024; Pej, ]. et al., 2022).

Fluid identification and hydrocarbon potential prediction: By integrating well logs, seismic data,
and geological information, Al models—such as random forests and deep neural networks—
can distinguish reservoir fluid types (oil, gas, water) and evaluate reservoir productivity
potential (Xiao Pengfei et al., 2020).
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Figure 2. Bidirectional RNN - GeeksforGeeks (Mousavi S et al,2019)

3.3. Multi-Source Information Fusion and Integrated Characterization

Information from a single data source is limited, making multi-source data fusion a necessary
approach to improve the reliability of reservoir characterization. Al plays a key role as both a
“fusion engine” and a “decoder” in this process (Zhang Binxin et al., 2024).

Well-seismic joint intelligent characterization: Deep learning frameworks are constructed
to simultaneously incorporate high-vertical-resolution information from well logs and lateral-
continuous information from seismic data. This allows joint inversion or prediction of the
three-dimensional fine structure of fracture-cavity reservoirs, achieving an integrated “point-
plane-volume” representation (Zhang Binxin et al., 2024).

Multiscale data fusion: Multiscale neural networks are designed to handle data ranging from
microscopic core thin sections to macroscopic seismic scales, enabling unified characterization
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of fracture-cavity systems from microstructure to macroscopic distribution (Ketineni, S. P. et
al,, 2015).

Integration of geological knowledge and data-driven models: Geological rules—such as
depositional facies control and structural stress-field influence—are embedded into Al models
as constraints, loss functions, or prior distributions. This “knowledge-enhanced” Al approach
ensures that model outputs are not only data-driven but also geologically reasonable (Ketineni,
S.P.etal, 2015).

4. Research Challenges

4.1. Data-Level Challenges

Data scarcity and imbalance: High-quality, labeled fracture-cavity data—especially “positive
samples” containing hydrocarbons—are costly to obtain, resulting in small and imbalanced
training datasets. Deep learning models tend to overfit under limited samples, leading to poor
generalization (Li Guohui et al., 2015). Generative adversarial networks (GANs) can be used to
generate synthetic data to alleviate this problem, but the authenticity of generated data must
be carefully evaluated.

Heterogeneity and fusion difficulties of multi-source data: Seismic, well-log, core, and
production data differ greatly in scale, resolution, and physical meaning. Designing effective
network architectures and fusion mechanisms that allow Al models to truly understand and
integrate heterogeneous information—rather than simply concatenating datasets—remains an
unresolved challenge (Ketineni et al., 2015).

4.2. Model-Level Challenges

Model interpretability (“black-box” problem): Complex deep learning models operate
opaquely, making it difficult for geoscientists to understand why certain predictions are made.
This poses a significant barrier in high-stakes exploration decisions (Feng X. et al.,, 2024).
Developing explainable Al (XAI) approaches—such as attention mechanisms and feature
importance analysis—is a current research focus and urgent need.

Limited model generalization: Models trained in one field or under a specific depositional-
diagenetic context often perform poorly when applied to areas with different geological
conditions (Alatefi, S. et al., 2023). Carbonate reservoirs are highly diverse (e.g., reef-shoal
bodies, karst fracture-cavity systems), with distinct formation mechanisms and controlling
factors, necessitating Al models with strong cross-field, cross-type transfer learning or adaptive
capabilities.

Physical consistency and geological plausibility: Purely data-driven models may produce
mathematically optimal results that violate fundamental physical laws or geological
knowledge—for example, predicting fracture orientations inconsistent with regional stress
fields. Incorporating physical equations (e.g., flow and rock mechanics equations) and
geological rules as hard or soft constraints into Al models—forming “physics-informed
machine learning” or “geology-guided Al”"—is key to improving model credibility and practical
value (Ketineni et al., 2015).

5. Conclusion and Future Outlook

Over the past decade, artificial intelligence has deeply penetrated the study of fracture-cavity
carbonate reservoirs, from identification and parameter prediction to 3D modeling,
significantly improving automation, intelligence, and quantitative accuracy. Research focus has
shifted from applying off-the-shelf models to developing specialized intelligent algorithms that
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integrate multi-source geological information. Future research is expected to advance along
several directions:

Few-shot and self-supervised learning: To address the natural bottleneck of data scarcity,
self-supervised learning can pretrain general feature representations on massive unlabeled
datasets, followed by fine-tuning on limited labeled samples—a highly promising direction.

Hybrid intelligent modeling integrating physics and data: Combining numerical solutions
from physical simulators with data-driven models can create “digital-twin”-level reservoir
agents, enabling a closed-loop workflow from static characterization to dynamic simulation and
prediction.

End-to-end integrated intelligent workflows: Developing Al platforms that cover data
preprocessing, feature extraction, model training, 3D modeling, and risk analysis can advance
fracture-cavity reservoir studies from “point intelligence” to “process intelligence.”

Artificial intelligence is reshaping the paradigm of fracture-cavity carbonate reservoir research.
Future success will depend on deep integration of geology, geophysics, and data science to
tackle ultimate challenges in data, model, and knowledge fusion, ultimately achieving
transparent reservoir understanding and intelligent hydrocarbon development
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