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Abstract	
The	effectiveness	of	emergency	response	to	earthquake	disasters	is	crucial	for	the	safety	
of	lives	and	property.	Unmanned	Aerial	Vehicles	(UAVs),	with	their	unique	mobility,	have	
emerged	 as	 a	 key	 force	 in	 reopening	 lifelines	 after	 earthquakes.	However,	 the	 post‐
earthquake	 environment	 is	 fraught	 with	 multiple	 constraints,	 including	 building	
collapses,	secondary	disasters,	restricted	airspace,	and	urgent	material	demands,	posing	
significant	challenges	to	UAV	path	planning.	To	address	these	challenges,	this	research	
focuses	on	the	core	issue	of	"UAV	path	planning	in	multi‐constraint	environments	after	
earthquakes."	 It	 systematically	 constructs	 a	 multi‐level	 assessment	 index	 system	
encompassing	disaster	severity,	demand	urgency,	environmental	feasibility,	and	rescue	
support	 level,	 and	 establishes	 a	 high‐fidelity	 3D	 geographic	 environment	 model.	
Furthermore,	an	Improved	Ant	Colony	Optimization	(IACO)	algorithm	 is	proposed.	By	
integrating	 a	 composite	 heuristic	 function	 that	 considers	 task	 priority	 and	
environmental	risks,	along	with	a	dynamic	pheromone	update	strategy,	the	algorithm	
effectively	balances	path	economy,	safety,	and	mission	 timeliness.	This	study	aims	 to	
form	a	complete	technical	closed‐loop	from	"environmental	perception"	to	"intelligent	
decision‐making,"	providing	a	solid	theoretical	and	technical	foundation	for	precise	UAV	
rescue	operations	in	complex	disaster	scenarios.	
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1. 3D	Geometric	Modeling	of	Post‐earthquake	Rescue	Environment	

To accurately simulate the complex post-earthquake environment and validate the UAV path 
planning algorithms, this study constructs a multi-constraint 3D geographic environment 
model integrating building clusters and mountainous flight zones[1]. The model 
comprehensively considers the typical characteristics of the post-earthquake environment and 
the practical constraints of UAV flight, providing a high-fidelity, multi-constraint simulation 
foundation for path planning algorithms[2]. 

1.1. Indicators	System	for	Assessing	Disaster	Areasafter	Earthquakes	
The efficient delivery of drone-assisted relief supplies post-earthquake is pivotal for 
minimizing disaster impacts and saving lives, with its effectiveness heavily dependent on 
accurate and rapid assessment of disaster zones[3]. Traditional methods relying on manual 
surveys and macroscopic intensity evaluations fall short in meeting the demands of drone 
rescue command decisions regarding timeliness and precision. Therefore, establishing a 
scientific, systematic, and quantifiable disaster assessment index system holds critical 
theoretical and practical significance for achieving intelligent and precise allocation of relief 
resources[4]. This study draws on the framework of resilience system theory, closely aligning 
with the technical characteristics and operational constraints of urban low-altitude drone 
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logistics, to develop an assessment index system for determining disaster zones for post-
earthquake drone relief supply delivery[5]. 
This system aims to "achieve precise and efficient delivery of rescue supplies via drones," with 
its core mission being to optimize resource allocation during the critical post-earthquake 
emergency period, ensuring essential supplies reach the most affected areas with minimal risk. 
To achieve this ultimate goal, the guideline framework establishes four evaluation criteria: First, 
"disaster severity" objectively quantifies the physical damage caused by earthquakes to 
vulnerable populations, which serves as the root cause of supply demand. Second, "urgency of 
need" identifies and measures the criticality of rescue requirements across different regions, 
establishing transportation priority levels[6]. Third, "environmental accessibility" specifically 
evaluates external constraints and risks for drone operations in target areas, forming the basis 
for route planning feasibility[7]. Fourth, "rescue support capacity" assesses the foundational 
capabilities of disaster zones in supporting drone operations—including landing, cargo 
handling, and communication support—which directly impacts the efficiency of rescue efforts. 
As shown in the table below: 
 

Table	1. Assessment Index System for Post-Earthquake Disaster Severity 
name of index computational 

formula Formula Explanation index 
attribute 

Building 
collapse density 𝑠ଵ ൌ

𝑁
𝐴

ൈ 100% 
𝑁𝐴The number of collapsed buildings identified by the drone, used to assess the total area of 

the region. 
forward 
direction 

life interruption 
index 

𝑆ଶ
ൌ 𝛼ଵ ⋅ 𝑅 ൅ 𝛼ଶ ⋅ 𝐶
൅ 𝛼ଷ ⋅ 𝑃 

𝑅𝐶𝑃𝛼𝛼ଵ ൅ 𝛼ଶ ൅ 𝛼ଷ ൌ 1𝑇ℎ𝑒 𝑟𝑜𝑎𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑜𝑢𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑒, 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑒,  
𝑎𝑛𝑑 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑜𝑢𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑒;  𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

forward 
direction 

Secondary 
disaster risk 

level 
𝑠ଷ ൌ 𝑝ଵ 

Based on factors such as seismic intensity, slope, lithology, and rainfall, the probability of 
occurrence is calculated using logistic regression or random forest models, and the results are 

classified into 1-5 levels. 

forward 
direction 

 
Table	2.	Index System for Emergency Material Demand Urgency 

name of index computational formula Formula Explanation 
Indicator 

Properties 

Forecasting the 
scale of the affected 

population 
𝐷ଵ ൌ 𝑓 

The prediction values are calculated 𝑆ଵ𝑆ଶ𝑆ଷby 
ACO-SVM prediction model based on seismic 

intensity, building collapse density, life 
interruption index and secondary disaster risk 

level. 

forward 
direction 

Vulnerability Index 
of Population 

𝐷ଶ ൌ 𝛽ଵ ⋅ 𝑚ଵ ൅ 𝛽ଶ ⋅ 𝑚ଶ ൅ 𝛽ଷ ⋅ 𝑚ଷ 
𝑚ଵ, 𝑚ଶ, 𝑚ଷ𝛽ଵ, 𝛽ଶ, 𝛽ଷThe proportions of the 

elderly, children, and people with disabilities; 
these are the weight coefficients.	

forward 
direction 

Signs for special 
locations 

1.0 𝑜𝑟𝐷ଷ ൌ 𝐷ଷ ൌ 1.5 
The value is 1.5 if the evaluated area is a school, 
hospital, or emergency shelter; otherwise, it is 

1.0. 

forward 
direction 

Duration of the 
material shortage 

𝐷ସ ൌ 𝑇஼ െ 𝑇௘ 𝑇஼𝑇௘Current time or earthquake disaster time 
forward 
direction 

	
Table	3. Index System for Environmental Feasibility 

name of index computational formula Formula Explanation  
Indicator 

Properties 
 

meteorologic 
condition 

𝐸ଵ ൌ 0ሺ𝑣௦ ൏ 𝑣୫ୟ୶ሻ 
𝐸ଵ ൌ 1ሺ𝑣௦ ൐ 𝑣୫ୟ୶ሻ 

𝑣௦𝑣௠௔௫Wind speed for the scenario, and the drone's 
maximum wind resistance	

 
negative 
direction 

 

terrain 
complexity 

𝐸ଶ ൌ
𝜎

𝛥𝐻
 

𝜎𝛥𝐻is the standard deviation of elevation in the grid, 
and is the relative height difference. The larger the 

value, the higher the difficulty of passage.	
 

negative 
direction 

 

Airspace 
congestion 𝐸ଷ ൌ

𝑁௨

𝐴
 

𝑁௨𝐴To estimate the number of drones in the airspace, 
for the airspace area 

 
negative 
direction 

 

availability of 
take-off and 

landing points 
𝐸ସ ൌ

𝑁௅

𝐴௅
 𝑁௅𝐴௅Calculate the average area of available takeoff 

and landing points. 
 forward 

direction 
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The internal logical relationship between the two forms the decision-making basis of UAV 
rescue scheduling: an area with extremely serious disaster and high urgency demand must be 
the absolute priority of rescue operation. 
 

Table	4. Index System for Rescue Support Leve 

name of index computational formula Formula Explanation  
Indicator 

Properties 
 

strength of 
communication 

signal 
𝑅ଵ ൌ 3,2,1,0 

Classify signal strength into four levels (3: 
strong, 2: medium, 1: weak, 0: none) based on 

field tests or carrier data 
 

forward 
direction 

 

local reception 
capability 

𝑝𝑒𝑟ℎ𝑎𝑝𝑠𝑅ଶ ൌ 1𝑅ଶ ൌ 0 
Rescue response with and without support, 

binary indicator	
 

forward 
direction 

 

electricity 
availability 

𝑅ଷ ൌ 1,0.5,0 
Classified into three levels based on actual 
conditions: 1 (stable power), 0.5 (unstable 

power), and 0 (no power) 
 

forward 
direction 

 

 
The comprehensive score for final requirement urgency is used to generate a demand heatmap 
and serves as the direct basis for prioritizing material distribution[8]. A weighted sum model 
of multi-dimensional indicators can be applied, as shown below: 

𝐷௧ ൌ ሾሺ𝜔ଵ ⋅ 𝐷ଵሻ ൅ ሺ𝜔ଶ ⋅ 𝐷ଶሻሿ ⋅ 𝐷ଷ ⋅ logሺDସ ൅ 1ሻ 
𝜔ଵ, 𝜔ଶ𝐷ଵ, 𝐷ଶ𝐷ଷlogሺDସ ൅ 1ሻNormalization weights to balance scale and vulnerability[9]. As a 
multiplier, it directly amplifies demand in specific regions. It simulates the nonlinear growth 
relationship where "the longer the time, the more urgent the demand". 
The comprehensive environmental passability score is used as the cost function for path 
planning, where higher values indicate greater flight risks and difficulties. The specific model is 
as follows: 

𝐸௧ ൌ 𝛾ଵ ⋅ 𝐸ଵ ൅ 𝛾ଶ ⋅ 𝐸ଶ ൅ 𝛾ଷ ⋅ 𝐸ଷ െ 𝛾ସ ⋅ 𝐸ସ 
𝛾ଵ, 𝛾ଶ,𝛾ଷ,𝛾ସ𝐸ଵ𝐸ଵ ൌ 1The weight coefficients for each indicator reflect the impact of different 
factors on passability. The variable is binary (0 or 1); if the weather is bad, it can be directly 
determined as impassable[10]. 
In summary, the multi-level evaluation index system developed in this study integrates disaster 
severity, urgency of needs, environmental accessibility, and rescue support capabilities. By 
introducing quantitative calculation formulas and dynamic weighting mechanisms, it achieves 
a transformation from macro qualitative assessment to micro quantitative analysis of post-
earthquake disaster conditions[11]. The system deeply integrates remote sensing 
interpretation, predictive model outputs, and real-time monitoring data, enabling precise 
quantification and spatial representation of key indicators such as "building collapse density," 
predicted affected population scale," and "meteorological conditions." Through algorithms like 
"special location identification weighting" and "material shortage duration functions," it 
ensures scientific integration of humanitarian considerations and rescue priorities[12]. 
Ultimately, the structured parameter set generated by this system provides direct and reliable 
decision-making inputs for upper-level UAV path planning algorithms, driving the creation of 
flight plans that balance safety and timeliness[13]. This forms a closed-loop feedback system 
progressing from "multi-source perception" to "intelligent decision-making" and then to 
"precision execution," laying a solid theoretical and technical foundation for enhancing the 
accuracy, intelligence, and efficiency of post-earthquake UAV rescue operations[14]. 

1.2. Hierarchical	Modeling	Theory	Model	
This study employs parametric modeling methodology to construct a 1800m × 1800m × 250m 
(X×Y×Z) three-dimensional urban environment on the MATLAB platform, with the modeling 
process following a systematic logical framework: 
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1) Based on the principle of hierarchical modeling of environmental elements, the complex 
space is divided into three relatively independent layers: terrain layer, building layer, and no-
fly zone layer, which are used to simulate natural terrain features, artificial building 
distribution, and hazardous area ranges respectively[15].  
2) Through spatial discretization, continuous geographic space is transformed into a uniformly 
distributed grid point matrix to construct the node network topology required for path 
search[16]. 
3) The multi-constraint integration strategy is adopted to integrate the physical constraints 
such as building obstacles, no-fly zone boundary and terrain elevation change into the path 
feasibility judgment mechanism, thus forming a comprehensive environment model with both 
geometric authenticity and computational feasibility[17]. 
The terrain layer modeling is based on the theory of digital elevation model, and adopts the 
method of superposition of multi-peak Gaussian function to construct the three-dimensional 
terrain surface conforming to the real terrain characteristics. The terrain elevation function is 
expressed as: 

       
2 2

21
, ,

2
pN i i

ii
i

x x y y
z x y A x y



   
    

  
  

The parameters pN pN include iA iA the number  ,i ix y of main  ,i ix y  peaks, peak height , 

the coordinates  ,x y of the mountain  ,x y peak center, and the Gaussian standard deviation 

to control the slope of the peaks[18]. The random noise makes the generated terrain more 
natural and better tests the performance of the path planning algorithm[19]. 
The 3D modeling of the stratum layer is shown below: 

  
Fig	1.	Terrain Layer Based on Elevation Model	

 
The terrain grid is generated by the grid generation function with a grid point spacing of 50 
meters, forming a regular grid of 37×37 points in the 1800m×1800m area, with a total of 1369 
terrain sampling points[20]. 
The architectural modeling employs a parametric generation method based on rule-based grids 
to construct a dense urban area containing 300-350 buildings. The modeling process begins 
with grid division to establish the building layout framework, setting uniform 15m×15m square 
building foundations and 8m spacing between structures to ensure rational spatial 
distribution[21]. Building heights are randomly generated within a range of 10-120m, 
simulating the diversity of building heights in real-world urban environments. As shown in the 
figure below: 
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Fig	2. 3D Terrain and Building Complexes 

 
Flight prohibition layer modeling is a critical component in post-earthquake UAV path planning, 
grounded in airspace management theory and risk assessment methodologies[22]. These zones 
designate high-risk or strictly restricted areas post-disaster, including but not limited to: fire 
zones, chemical spill sites, severely collapsed structures, emergency rescue core zones, and any 
areas potentially compromising drone flight safety[23]. 
The no-fly zone (NFAZ) modeling employs a parametric stochastic generation method to create 
6-10 cubic NFAZs within a 1800m×1800m area, with dimensions ranging from 100-300m 
(length and width) and 50-120m (height), simulating hazardous zones such as post-earthquake 
fires and collapses. A spatial constraint algorithm ensures safe distances between NFAZs and 
the starting/ending points[24]. The geometric model uses red translucent cubes for 
visualization, integrated with an AABB bounding box collision detection mechanism[25]. 
The modeling method provides reliable safety constraints for path planning algorithm by strict 
parameter control and geometry optimization, which reflects the systematic modeling idea 
from disaster scene analysis to mathematical representation[26]. 

 
Fig	3. 3D Modeling of the No-Fly Layer 

2. Theoretical	Model	Establishment	

This study establishes a multi-level evaluation index system that integrates disaster severity, 
urgency of needs, environmental accessibility, and rescue support capabilities, providing a 
quantitative basis for drone rescue route planning. Building on this foundation, this section 
further develops a theoretical model for route planning, aiming to translate the aforementioned 
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predictions and assessments into actionable drone flight plans, thereby forming an integrated 
"prediction-assessment-planning" research framework[27]. 

2.1. Problem	Description	and	Basic	Assumptions	
China is a country with frequent seismic activity. Despite occupying only 7% of the global land 
area, it has experienced 33% of the world's earthquakes, which further highlights the severity 
of earthquake disasters. According to statistics from the China Earthquake Information 
Network, in the 20th century, China experienced 380 earthquakes of magnitudes 6.0 to 6.9, 65 
earthquakes of magnitudes 7.0 to 7.9, and 7 earthquakes of magnitudes 8.0 or higher, including 
2 earthquakes of magnitude 8.5. Earthquakes have caused enormous losses to the lives and 
property of the Chinese people[28]. 
The post-earthquake emergency rescue environment is highly complex, primarily manifested 
in three aspects: First, infrastructure is severely damaged, road networks are disrupted, and 
traditional transportation methods struggle to effectively carry out rescue operations. Second, 
disaster areas contain numerous secondary hazard zones, such as fire zones and collapsed 
areas, which pose threats to drone flight safety. Third, the demand for rescue supplies exhibits 
significant spatiotemporal heterogeneity, with varying urgency levels across different affected 
areas[29]. These characteristics make drone path planning a classic multi-objective, multi-
constraint optimization problem. 
To address this complex decision-making environment, the study establishes the following 
fundamental assumptions: First, the disaster zone's geographical layout can be discretized into 
a two-dimensional grid map, with each grid cell representing a decision node. Second, the 
rescue system comprises a logistics hub (starting point) and multiple affected locations 
(endpoints), where the urgency of material demands at each endpoint is predetermined[30]. 
Third, the environment contains designated high-risk zones that drones must strictly avoid. 
Fourth, drones operate at constant speeds while adhering to predefined altitude and speed 
constraints. Fifth, drones can independently plan their routes without any coordination 
conflicts. 

2.2. Construction	of	Multi‐objective	Optimization	Function	
Based on the problem description and basic assumptions, this study constructs a multi-
objective optimization model with three core objectives: minimizing flight distance, threat cost, 
and altitude cost. Considering that multi-objective optimization problems typically lack a single 
optimal solution but rather a Pareto optimal solution set, the study employs the weighted sum 
method to transform the multi-objective problem into a single-objective problem for 
resolution[31]. 
The core objective function of the model is defined as follows: 

1 2 3
1 ( , )

min ( )
N

a
ij ij ij ij

a i j

F w L w T w H x
 

     

The total L flight distance is the cost of the path economyT , the threat cost is the cost of the 
H path safetyH , and the altitude cost is the cost of the flight 1 2 3w w w、 、 altitude 1 2 3w w w、 、 on 

the 1 2 3 1w w w   energy consumption and stability 1 2 3 1w w w   . 

The weight coefficients are determined by fully incorporating the material demand urgency 
information predicted in Section For regions with higher demand urgency, the time weight is 
appropriately increasedto ensure rapid delivery of relief supplies. For areas with complex 
terrain and higher risks, the safety weight is correspondingly enhanced to guarantee flight 
safety. This dynamic weight adjustment mechanism reflects a paradigm shift from "geometric 
path optimization" to "rescue mission optimization". 
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The decision a
ijx variable is a binary variablea , indicating iwhether j the 1a

ijx  drone chooses 

1a
ijx   0a

ijx  path from node to 0a
ijx  node. When, it means the path is selected; when, it means 

the path is not selected. Through this definition of the variable, the continuous path planning 
problem is transformed into a discrete network optimization problem[32]. 

2.3. Design	of	the	Constraint	System	
In post-earthquake UAV rescue path planning, the design of constraint conditions directly 
impacts the feasibility, safety, and practicality of the routes. This study establishes a 
comprehensive constraint system based on the unique post-earthquake environment and 
technical requirements for UAV flight[33]. The system encompasses four dimensions: path 
structure constraints, physical performance constraints, regional safety constraints, and 
timeliness constraints. This ensures the planning solution not only meets mathematical 
optimization requirements but also fulfills practical rescue needs. 
1. Path structure constraints 
Path structure constraints ensure the integrity of rescue missions and the continuity of routes, 
serving as fundamental constraints in path planning. The starting point departure constraint 
guarantees that every drone departs from a designated logistics hub, mathematically expressed 
as: 

 1     1,2,..., ,a
sj

j

x a N s S     

The constraint S on the starting point set ensures all drones can take off for rescue missions. 
The arrival constraint guarantees each drone ultimately reaches the designated disaster 
site[34]. 

1      
a

a
ie

i

x a   

This indicates the drone's target destination, ensuring rescue supplies are delivered precisely 
to the intended area. The intermediate node flow balance constraint guarantees path continuity 
and loop-free operation, preventing any stops or loops at intermediate nodes. 

      ,a a
ik ik

i j

x x k S E a       

This constraint ensures that the UAV immediately moves to the next node after completing the 
current node task, thus improving rescue efficiency[35]. 
2. Physical performance constraints 
Physical performance constraints account for the actual flight capabilities and hardware 
limitations of the UAV. The flight speed constraint defines the maximum allowable flight speed 
of the UAV: 

 max       , ,a
ijv v i j a    

The flight maxv time constraint is determined based on the selected drone model (e.g., the DJI 

Matrice350 RTK has a maximum speed of 23 m/s). This constraint takes into account the 
battery's endurance[36]. 

max
( , )

       a
ij

i j

t T a   

The maximum max  T max  T endurance of the drone is approximately 55 minutes for the 
Matrice350 RTK under full load conditions. Flight altitude constraints ensure flight safety: 

 min max      , ,a
ijh h h i j a     
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This constraint prevents the drone from flying too low (collision risk) or too high (signal loss 
risk), typically setting a minimum safe altitude of 30 meters above the ground and a maximum 
flight altitude of 500 meters. 
3. Regional security constraints 
Regional safety constraints are critical requirements in post-earthquake environments, directly 
impacting drone flight safety. The no-fly zone regulations in high-risk areas prohibit all flight 
paths from crossing hazardous zones. 

 0    if , 0a
ijx i j M    

This represents M M the set of all high-risk areas (e.g., fire, collapse, chemical spill zones). The 
dynamic risk zone constraint accounts for the impact of aftershocks and secondary disasters. 

   0    if   Ra
ij ij tx t t R   

The risk  R ij t  R ij t t value  ,i j t at  ,i j the moment path is indicated, which can be 
dynamically updated based on the aftershock prediction model and real-time monitoring data. 
The communication support constraint ensures the drone remains within a controllable range 
at all times. 

     , ,a
ij cd d i j a    

The maximum cd cd communication range is approximately 7-10 kilometers for conventional 

drones. 
4. Time-bound constraints 
The timeliness constraint reflects the urgency of post-earthquake rescue. The golden rescue 
time constraint requires that supplies be delivered within 72 hours. 

 ,

72     a
ij

i j

t h a   

The urgency priority constraint ensures that high urgency areas are prioritized for rescue: 

 
min

,

     ea
ij e h

a i j

x U U E     

This represents eU eU ethe eurgency hE level hE of affected points, forming a set of high-priority 
disaster sites. The time window constraint considers the optimal rescue timing for different 
affected points. 

min max,      ee e et T T E      

The earliest min
eT

max
eT

min
eT

max
eT and ethe latest erescue time of the disaster site are indicated by 

and. 
5. Load capacity constraints 
The payload capacity constraint considers the material transportation capability of the UAV. 
The weight constraint limits the weight of materials transported in a single mission. 

max     a
e e

e

w y W a    

This ew indicates ew the e maximum maxW e payload maxW capacity of the drone for delivering 

supplies to disaster areas. The volume constraint limits the total volume of transported 
materials. 

max      a
e e

e

v y V a    
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This indicates ev ev the volume eeof supplies maxV maxV delivered to disaster areas, which is the 

maximum capacity of the drone. 
This constraint system ensures both feasibility and safety of path planning across multiple 
dimensions, providing clear boundary conditions for subsequent algorithm implementation. 
The comprehensive design of this constraint framework not only maintains the rigor of the 
mathematical model but also guarantees the applicability and reliability of the planning 
solution in real-world rescue scenarios. This establishes a solid foundation for the algorithm 
design and simulation validation detailed in next Section [37]. 

3. UAV	Path	Planning	Based	on	Improved	Ant	Colony	Optimization	(IACO)	
Algorithm	

Building upon the multi-objective optimization model and constraint framework developed in 
Section 3.2, and considering the critical characteristics of post-earthquake rescue scenarios—
prioritizing urgency and dynamic constraint adaptation—we propose targeted enhancements 
to the traditional Ant Colony Optimization (ACO) algorithm. This results in the Improved Ant 
Colony Optimization (IACO) algorithm, which integrates disaster prediction, environmental 
constraints, and task adaptation. Simulation experiments validate IACO's effectiveness in post-
earthquake UAV path planning. The specific implementation details are as follows: 

3.1. Improving	the	Core	Mechanism	Design	of	Ant	Colony	Optimization	(IACO)	
Algorithm	

The traditional ACO algorithm has some defects in post-earthquake scene, such as single 
heuristic information, easy saturation of pheromone, and poor adaptability of multi-constraint. 
This paper improves the algorithm from three aspects, such as constructing composite heuristic 
function, updating strategy of dynamic pheromone, and mediation mechanism of multi-
constraint conflict, and forms the core logic of the algorithm suitable for post-earthquake 
rescue[38]. 

Breaking away from the conventional ACO's reliance on the singular guidance of "inverse  tD
distance  tE ," this  tE approach  ijH incorporates  ijH the urgency of quantized requirements, 
environmental passability, and terrain elevation costs from Section 3.1.3 into the heuristic 
function. This creates a multi-factor collaborative guidance mechanism that ensures path 
planning simultaneously meets the requirements of "timeliness, safety, and task priority." The 
specific formula is as follows: 
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1 1
(1 )ij j ij
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In addition, the weight distribution  1 4w w  1 4w w was determined by the analytic hierarchy 

process (AHP) combined 1 0.3w  with the 1 0.3w  2 0.4w  priority of 2 0.4w  3 0.2w  post 4 0.1w  -

earthquake relief 3 0.2w  , in 4 0.1w  which the "golden 72 hours" took (distance cost), (demand 
urgency), (environmental safety), (altitude cost), and the priority was to ensure the delivery of 
materials to high-demand areas. 
The hybrid heuristic function is integrated into the ant's state transition decision, expressed as: 
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The pheromone t  ij t i concentration j j i from 1.2  the time 1.2  node to the node is 

(pheromone 3.5  importance coefficient 3.5  , controlling the balance between kallowed

exploration k and utilization kallowed of k the algorithm), (heuristic information importance 
coefficient, strengthening the guiding role of the demand and environment); the feasible 
neighbor node set of the ant is (excluding the visited node and high-risk no-fly zone). 
To solve the problems of easy saturation and slow convergence of traditional ACO, a three-layer 
pheromone update mechanism of "global volatilization + elite feedback + demand weighting" 
is designed, which avoids the algorithm falling into local optimum and strengthens the guidance 
of high-demand path. 
After each iteration, all pheromone on the path is fixed proportion volatilization, the formula is: 

     1 1ij ijt t       

The volatility 0.12  coefficient surpasses that 0.1 of traditional 0.1 ACO, which enhances 
the algorithm's dynamic exploration capability and adapts to emergencies like post-earthquake 
aftershocks and secondary disasters. 
In each iteration, elite ants that satisfy the criteria of "path length ≤ 80% of average length, no 
collision risk, and coverage of high-demand nodes ≥ 3" are selected, with additional pheromon
e added to their paths. The formula is: 

   1 1 e
ij ij

e

Q
t t

L
    

 

The elite 150eQ  pheromone intensity is eL higher than eL that of ordinary ants. The path length 
of elite ants (unit: m) is used to accelerate the convergence ofhigh-quality paths. 

For paths passing through  4jD  "high-demand nodes", The formula is: 

     1 1 1 0.2ij ij jt t D        

The mechanism guides the ants to choose the path of high demand area first, and realizes the 
dynamic binding of "demand priority-path planning." 
To ensure the planned path meets both feasibility and safety requirements, this study 
implements a three-tiered multi-constraint conflict resolution mechanism integrating Section 
3.2.3's physical performance constraints (speed, endurance, altitude) with regional safety 
constraints (no-fly zones, risk zones). During the pre-detection phase, the system employs an 
AABB bounding box collision detection method (compatible with irregular obstacles like 3D 
structures and mountains) to conduct multi-dimensional feasibility verification of candidate 
paths. The verification includes: 1) Spatial safety validation: Ensuring the minimum distance 
between the path and obstacles (e.g., buildings, mountains) meets a 20m safety threshold, and 
avoiding high-risk no-fly zones (e.g., areas with wind speeds exceeding the drone's maximum 
wind resistance of 12m/s, or regions with secondary disaster risk level ≥4);  
2) Physical performance validation: Assessing whether the remaining endurance time (55 
minutes under full payload) and altitude changes (≤0.8m/s maximum climb rate) meet 
operational requirements. If any validation fails, the path is marked as "unfeasible" and 
excluded from the drone's viable neighbor node set. 
During the dynamic avoidance phase, when the algorithm encounters local trapping scenarios 
(e.g., dense building clusters or multiple no-fly zones overlapping to reduce viable neighbor 
nodes to ≤3), the "virtual sub-target" compensation mechanism activates. Using the current 
node-target disaster point line as the reference axis, a virtual node is generated at 200m from 
the current node and 30m above terrain elevation. This virtual node is incorporated into the 
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viable neighbor set, enabling path breakthrough through "step-by-step guidance" to prevent 
algorithmic convergence failure due to local constraints[39]. 
During the path correction phase, the initially planned route undergoes smoothing and 
optimization. If the path exhibits vertical fluctuations exceeding 50 meters (which surpasses 
the drone's maximum climbing capability), the system applies k-order B-spline curves[40]. 

   
0

,
n

i ii
P u N k u P


   

The system  ,iN k u k employs iP k a B-spline iP basis function to smooth path segments, 
ensuring elevation gradients remain ≤0.5m/m. It merges redundant nodes (adjacent nodes 
within 50m without constraint differences) to reduce path length without compromising safety, 
optimizing for endurance constraints. This three-tier mechanism—combining preventive 
measures, real-time mediation,and post-incident optimization—effectively resolves multi-
constraint conflicts, guaranteeing safe and efficient drone operations in post-earthquake 
complex environments[41]. 

3.2. Algorithm	Simulation	Experiment	Design	
To validate the effectiveness of the Improved Ant Colony Optimization (IACO) algorithm in 
post-earthquake UAV rescue logistics path planning, this study developed a simulation 
environment on MATLAB R2023a platform. Using Section 3.1 disaster assessment data and 
Section 3.2 constraint system as inputs, we designed a three-tier experimental framework 
comprising "basic performance verification, multi-scenario comparison, and constraint 
sensitivity analysis" to comprehensively evaluate the algorithm's efficiency, safety, and task 
adaptability. 
The experimental geographical environment is based on the typical geomorphological features 
of the high-frequency earthquake zones in western China, such as the Longmenshan fault zone 
in Sichuan and the eastern section of the Nantian Mountains in Xinjiang. A 
1800m×1800m×200m (X×Y×Z) three-dimensional post-earthquake scene model is 
constructed. 

 
Fig	4.	Post-Earthquake Environmental Simulation Map 

 
The simulation covers 320 buildings ranging from 10 to 130 meters in height, with partial 
collapse structures modeled after the earthquake. It includes three mountainous terrain areas 
reaching 200 meters in elevation, slopes between 15° and 30°, and eight high-risk no-fly zones 
measuring 100-300m×100-300m tD ×50-120m, corresponding to secondary disaster zones 
such as fire areas and chemical spill zones. A material distribution center and five disaster-
affected endpoints are established, with their coordinates determined by post-earthquake 
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population density distribution, assigned urgency levels of 2.1, 3.5, 4.2, 3.8, and 4.7 respectively. 
As shown in the figure 4. 

 
Table	5.	Distribution of Urgency Degree for Disaster-Affected Sites 

order 
number 

Coordinate position urgency of tD need
 

area type Supplies 

1 (450, 600) 4.7 hospital first aid medicine, blood 
2 (1200, 900) 4.2 school Food, drinking water 
3 (900, 1500) 3.8 residential quarters Tents, warm supplies 

4 (300, 1200) 3.5 community 
Emergency lighting 

equipment 

5 (1500, 400) 2.1 
mildly damaged 

area 
General supplies 

 
The drone parameters were selected from the DJI Matrice350 RTK model, a standard choice for 
post-earthquake rescue operations. Its physical specifications include: maximum flight speed 
of 23 m/s, full-load endurance of 55 minutes, maximum wind resistance of 12 m/s, minimum 
flight altitude of 30m (above ground), and maximum climb rate of 0.8 m/s, ensuring the 
simulation closely mirrors real rescue scenarios. The DJI Matrice350 RTK drone was chosen for 
its post-earthquake rescue applications, with parameters referencing its official technical 
specifications as follows: 
 

Table	6.	Reference for DJI Matrice 350 RTK Drone Parameters	
Parameter	category	 Parameter	name	 short‐cut	process	

physical property ceiling altitude 23m/s 
 full load endurance 55min 
 maximum load 15kg 
 maximum wind resistance 12m/s 

flight constraint minimum flight altitude 30m 

 maximum altitude 500m 

 maximum climb ratio 0.8m/s 

ability to communicate maximum communication distance 10km 

 
Building upon the traditional ant colony algorithm, this study introduces a multi-factor 
composite heuristic function that integrates material urgency, environmental passability, and 
terrain elevation costs to comprehensively guide the path search process. The proposed 
improved ant colony algorithm (IACO) incorporates a dynamic pheromone update mechanism, 
combining global volatilization, elite ant strategies, and demand weight feedback to effectively 
balance exploration and exploitation capabilities while preventing premature convergence. 
In this study's MATLAB simulation system, the IACO algorithm serves as the core path planning 
method. By introducing a multi-factor heuristic function and a dynamic pheromone update 
mechanism, it significantly enhances the performance of the traditional ant colony algorithm in 
complex post-earthquake environments. The experimental simulation results are shown in the 
figure below: 
Simulation results show that IACO algorithm is superior to traditional methods in path length, 
convergence speed and task completion rate, especially in high-demand priority areas, which 
provides reliable path planning support for post-earthquake UAV material delivery. 
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Fig	5. Path Generated by the AICO Algorithm 
 

	
Fig	6. Path Generated by the AICO Algorithm Based on Urgency Degree 
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