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Abstract

The effectiveness of emergency response to earthquake disasters is crucial for the safety
oflives and property. Unmanned Aerial Vehicles (UAVs), with their unique mobility, have
emerged as a key force in reopening lifelines after earthquakes. However, the post-
earthquake environment is fraught with multiple constraints, including building
collapses, secondary disasters, restricted airspace, and urgent material demands, posing
significant challenges to UAV path planning. To address these challenges, this research
focuses on the core issue of "UAV path planning in multi-constraint environments after
earthquakes." It systematically constructs a multi-level assessment index system
encompassing disaster severity, demand urgency, environmental feasibility, and rescue
support level, and establishes a high-fidelity 3D geographic environment model.
Furthermore, an Improved Ant Colony Optimization (IACO) algorithm is proposed. By
integrating a composite heuristic function that considers task priority and
environmental risks, along with a dynamic pheromone update strategy, the algorithm
effectively balances path economy, safety, and mission timeliness. This study aims to
form a complete technical closed-loop from "environmental perception” to "intelligent
decision-making," providing a solid theoretical and technical foundation for precise UAV
rescue operations in complex disaster scenarios.
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1. 3D Geometric Modeling of Post-earthquake Rescue Environment

To accurately simulate the complex post-earthquake environment and validate the UAV path
planning algorithms, this study constructs a multi-constraint 3D geographic environment
model integrating building clusters and mountainous flight zones[1]. The model
comprehensively considers the typical characteristics of the post-earthquake environment and
the practical constraints of UAV flight, providing a high-fidelity, multi-constraint simulation
foundation for path planning algorithms|[2].

1.1. Indicators System for Assessing Disaster Areasafter Earthquakes

The efficient delivery of drone-assisted relief supplies post-earthquake is pivotal for
minimizing disaster impacts and saving lives, with its effectiveness heavily dependent on
accurate and rapid assessment of disaster zones[3]. Traditional methods relying on manual
surveys and macroscopic intensity evaluations fall short in meeting the demands of drone
rescue command decisions regarding timeliness and precision. Therefore, establishing a
scientific, systematic, and quantifiable disaster assessment index system holds critical
theoretical and practical significance for achieving intelligent and precise allocation of relief
resources[4]. This study draws on the framework of resilience system theory, closely aligning
with the technical characteristics and operational constraints of urban low-altitude drone
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logistics, to develop an assessment index system for determining disaster zones for post-
earthquake drone relief supply delivery[5].

This system aims to "achieve precise and efficient delivery of rescue supplies via drones," with
its core mission being to optimize resource allocation during the critical post-earthquake
emergency period, ensuring essential supplies reach the most affected areas with minimal risk.
To achieve this ultimate goal, the guideline framework establishes four evaluation criteria: First,
"disaster severity" objectively quantifies the physical damage caused by earthquakes to
vulnerable populations, which serves as the root cause of supply demand. Second, "urgency of
need" identifies and measures the criticality of rescue requirements across different regions,
establishing transportation priority levels[6]. Third, "environmental accessibility" specifically
evaluates external constraints and risks for drone operations in target areas, forming the basis
for route planning feasibility[7]. Fourth, "rescue support capacity" assesses the foundational
capabilities of disaster zones in supporting drone operations—including landing, cargo
handling, and communication support—which directly impacts the efficiency of rescue efforts.
As shown in the table below:

Table 1. Assessment Index System for Post-Earthquake Disaster Severity

. computational . index
name of index formula Formula Explanation attribute
Building N 1009 NAThe number of collapsed buildings identified by the drone, used to assess the total area of forward
collapse density 577 x % the region. direction
life interruption “EZ @ -Rta C RCPaa, + a, + a; = 1The road network outage rate, the communication outage rate, forward
index ot . 2 and the water supply network outage rate; the weight coef ficient direction
t+a;-P
Secondary Based on factors such as seismic intensity, slope, lithology, and rainfall, the probability of
- . . . - . forward
disaster risk S3 =Dy occurrence is calculated using logistic regression or random forest models, and the results are direction
level classified into 1-5 levels.
Table 2. Index System for Emergency Material Demand Urgency
name of index computational formula Formula Explanation Indlcatf)r
Properties
The prediction values are calculated S, S,S;by
Forecasting the ACO-SVM prediction model based on seismic forward
scale of the affected Di=f intensity, building collapse density, life o
. . . . . direction
population interruption index and secondary disaster risk
level.
Vulnerability Index m mz,m3ﬁ1,ﬂ2,ﬂ3The proportions o.th.e forward
. D, =B -mi+ L, -my+f5-my elderly, children, and people with disabilities; . .
of Population . . direction
these are the weight coefficients.
Signs for special The value is 1.5 if the evaluated area is a school, forward
& Sp 1.00rD; =D; =15 hospital, or emergency shelter; otherwise, it is . .
locations 1.0 direction
Duration of the . . . forward
material shortage Dy,=Tc;—-T, T.T,Current time or earthquake disaster time direction
Table 3. Index System for Environmental Feasibility
. . . Indicator
name of index computational formula Formula Explanation Properties
meteorologic E; = 0(vs < Vmax) VsVUmax Wind speed for the scenario, and the drone's negative
condition E; = 1(vg > vpay) maximum wind resistance direction
. oAHis the standard deviation of elevation in the grid, .
terrain o . . . . negative
. E, =— and is the relative height difference. The larger the . .
complexity AH . - direction
value, the higher the difficulty of passage.
Airspace E. = Ny N, ATo estimate the number of drones in the airspace, negative
congestion 374 for the airspace area direction
availability of .
Y Ny N, A, Calculate the average area of available takeoff forward
take-off and E,=— ; . . .
. . A; and landing points. direction
landing points
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The internal logical relationship between the two forms the decision-making basis of UAV
rescue scheduling: an area with extremely serious disaster and high urgency demand must be
the absolute priority of rescue operation.

Table 4. Index System for Rescue Support Leve

name of index computational formula Formula Explanation Indlcat(_)r
Properties
strength of Classify signal strength into four levels (3:
C . forward
communication Ry =3,2,1,0 strong, 2: medium, 1: weak, 0: none) based on . .
. i . direction
signal field tests or carrier data
local reception _ _ Rescue response with and without support, forward
capability perhapsk, = 1R, =0 binary indicator direction
electricity Classified into three levels based on actual forward
N R; =1,05,0 conditions: 1 (stable power), 0.5 (unstable . .
availability direction
power), and 0 (no power)

The comprehensive score for final requirement urgency is used to generate a demand heatmap
and serves as the direct basis for prioritizing material distribution[8]. A weighted sum model
of multi-dimensional indicators can be applied, as shown below:

D; = [(wy * D) + (w3 - D3)] - D3 - log(Dy + 1)
w1, W, Dy, D,D3log(Dy + 1) Normalization weights to balance scale and vulnerability[9]. As a
multiplier, it directly amplifies demand in specific regions. It simulates the nonlinear growth
relationship where "the longer the time, the more urgent the demand".
The comprehensive environmental passability score is used as the cost function for path
planning, where higher values indicate greater flight risks and difficulties. The specific model is
as follows:

Ee=v1 - E1+v, Er+v3-E3—Vy-Ey

Y1, V2Y3Y+E1E; = 1The weight coefficients for each indicator reflect the impact of different
factors on passability. The variable is binary (0 or 1); if the weather is bad, it can be directly
determined as impassable[10].
In summary, the multi-level evaluation index system developed in this study integrates disaster
severity, urgency of needs, environmental accessibility, and rescue support capabilities. By
introducing quantitative calculation formulas and dynamic weighting mechanisms, it achieves
a transformation from macro qualitative assessment to micro quantitative analysis of post-
earthquake disaster conditions[11]. The system deeply integrates remote sensing
interpretation, predictive model outputs, and real-time monitoring data, enabling precise
quantification and spatial representation of key indicators such as "building collapse density,"
predicted affected population scale," and "meteorological conditions." Through algorithms like
"special location identification weighting” and "material shortage duration functions,” it
ensures scientific integration of humanitarian considerations and rescue priorities[12].
Ultimately, the structured parameter set generated by this system provides direct and reliable
decision-making inputs for upper-level UAV path planning algorithms, driving the creation of
flight plans that balance safety and timeliness[13]. This forms a closed-loop feedback system
progressing from "multi-source perception” to "intelligent decision-making" and then to
"precision execution," laying a solid theoretical and technical foundation for enhancing the
accuracy, intelligence, and efficiency of post-earthquake UAV rescue operations[14].

1.2. Hierarchical Modeling Theory Model

This study employs parametric modeling methodology to constructa 1800m x 1800m x 250m
(XxYxZ) three-dimensional urban environment on the MATLAB platform, with the modeling
process following a systematic logical framework:
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1) Based on the principle of hierarchical modeling of environmental elements, the complex
space is divided into three relatively independent layers: terrain layer, building layer, and no-
fly zone layer, which are used to simulate natural terrain features, artificial building
distribution, and hazardous area ranges respectively[15].

2) Through spatial discretization, continuous geographic space is transformed into a uniformly
distributed grid point matrix to construct the node network topology required for path
search[16].

3) The multi-constraint integration strategy is adopted to integrate the physical constraints
such as building obstacles, no-fly zone boundary and terrain elevation change into the path
feasibility judgment mechanism, thus forming a comprehensive environment model with both
geometric authenticity and computational feasibility[17].

The terrain layer modeling is based on the theory of digital elevation model, and adopts the
method of superposition of multi-peak Gaussian function to construct the three-dimensional
terrain surface conforming to the real terrain characteristics. The terrain elevation function is
expressed as:

z(x,y):zli”l/]j- _(x—xi)2+(y—yi)2 +e(x,p)

207

The parameters N, N, include 4 A4 the number (x,y,)of main (x,y,) O peaks, peak height o,
the coordinates &(x,y)of the mountain &(x,y)peak center, and the Gaussian standard deviation
to control the slope of the peaks[18]. The random noise makes the generated terrain more

natural and better tests the performance of the path planning algorithm[19].
The 3D modeling of the stratum layer is shown below:
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Fig 1. Terrain Layer Based on Elevation Model

The terrain grid is generated by the grid generation function with a grid point spacing of 50
meters, forming a regular grid of 37x37 points in the 1800mx1800m area, with a total of 1369
terrain sampling points[20].

The architectural modeling employs a parametric generation method based on rule-based grids
to construct a dense urban area containing 300-350 buildings. The modeling process begins
with grid division to establish the building layout framework, setting uniform 15mx15m square
building foundations and 8m spacing between structures to ensure rational spatial
distribution[21]. Building heights are randomly generated within a range of 10-120m,
simulating the diversity of building heights in real-world urban environments. As shown in the
figure below:
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Three-dimensional terrain and building complex modeling

Fig 2. 3D Terrain and Building Complexes

Flight prohibition layer modeling is a critical component in post-earthquake UAV path planning,
grounded in airspace management theory and risk assessment methodologies[22]. These zones
designate high-risk or strictly restricted areas post-disaster, including but not limited to: fire
zones, chemical spill sites, severely collapsed structures, emergency rescue core zones, and any
areas potentially compromising drone flight safety[23].

The no-fly zone (NFAZ) modeling employs a parametric stochastic generation method to create
6-10 cubic NFAZs within a 1800mx1800m area, with dimensions ranging from 100-300m
(length and width) and 50-120m (height), simulating hazardous zones such as post-earthquake
fires and collapses. A spatial constraint algorithm ensures safe distances between NFAZs and
the starting/ending points[24]. The geometric model uses red translucent cubes for
visualization, integrated with an AABB bounding box collision detection mechanism[25].

The modeling method provides reliable safety constraints for path planning algorithm by strict
parameter control and geometry optimization, which reflects the systematic modeling idea
from disaster scene analysis to mathematical representation[26].

Fig 3. 3D Modeling of the No-Fly Layer

2. Theoretical Model Establishment

This study establishes a multi-level evaluation index system that integrates disaster severity,
urgency of needs, environmental accessibility, and rescue support capabilities, providing a
quantitative basis for drone rescue route planning. Building on this foundation, this section
further develops a theoretical model for route planning, aiming to translate the aforementioned
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predictions and assessments into actionable drone flight plans, thereby forming an integrated
"prediction-assessment-planning” research framework[27].

2.1. Problem Description and Basic Assumptions

China is a country with frequent seismic activity. Despite occupying only 7% of the global land
area, it has experienced 33% of the world's earthquakes, which further highlights the severity
of earthquake disasters. According to statistics from the China Earthquake Information
Network, in the 20th century, China experienced 380 earthquakes of magnitudes 6.0 to 6.9, 65
earthquakes of magnitudes 7.0 to 7.9, and 7 earthquakes of magnitudes 8.0 or higher, including
2 earthquakes of magnitude 8.5. Earthquakes have caused enormous losses to the lives and
property of the Chinese people[28].

The post-earthquake emergency rescue environment is highly complex, primarily manifested
in three aspects: First, infrastructure is severely damaged, road networks are disrupted, and
traditional transportation methods struggle to effectively carry out rescue operations. Second,
disaster areas contain numerous secondary hazard zones, such as fire zones and collapsed
areas, which pose threats to drone flight safety. Third, the demand for rescue supplies exhibits
significant spatiotemporal heterogeneity, with varying urgency levels across different affected
areas[29]. These characteristics make drone path planning a classic multi-objective, multi-
constraint optimization problem.

To address this complex decision-making environment, the study establishes the following
fundamental assumptions: First, the disaster zone's geographical layout can be discretized into
a two-dimensional grid map, with each grid cell representing a decision node. Second, the
rescue system comprises a logistics hub (starting point) and multiple affected locations
(endpoints), where the urgency of material demands at each endpoint is predetermined[30].
Third, the environment contains designated high-risk zones that drones must strictly avoid.
Fourth, drones operate at constant speeds while adhering to predefined altitude and speed
constraints. Fifth, drones can independently plan their routes without any coordination
conflicts.

2.2. Construction of Multi-objective Optimization Function

Based on the problem description and basic assumptions, this study constructs a multi-
objective optimization model with three core objectives: minimizing flight distance, threat cost,
and altitude cost. Considering that multi-objective optimization problems typically lack a single
optimal solution but rather a Pareto optimal solution set, the study employs the weighted sum
method to transform the multi-objective problem into a single-objective problem for
resolution[31].

The core objective function of the model is defined as follows:

N
min F' = Z Z WL, +w,T; + wH  )x;
a=1 (i,j)ee
The total L flight distance is the cost of the path economy T , the threat cost is the cost of the
H path safety H, and the altitude cost is the cost of the flight W~ W, Waltitude W~ W,» Won

the W +w, +W;, =l energy consumption and stability W +w, +w; =1.

The weight coefficients are determined by fully incorporating the material demand urgency
information predicted in Section For regions with higher demand urgency, the time weight is
appropriately increasedto ensure rapid delivery of relief supplies. For areas with complex
terrain and higher risks, the safety weight is correspondingly enhanced to guarantee flight
safety. This dynamic weight adjustment mechanism reflects a paradigm shift from "geometric
path optimization" to "rescue mission optimization".
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The decision x; variable is a binary variablea, indicating i whether jthe x;=1drone chooses

xlj =1 x; =0 path from node to xij’, =0 node. When, it means the path is selected; when, it means

the path is not selected. Through this definition of the variable, the continuous path planning
problem is transformed into a discrete network optimization problem[32].

2.3. Design of the Constraint System

In post-earthquake UAV rescue path planning, the design of constraint conditions directly
impacts the feasibility, safety, and practicality of the routes. This study establishes a
comprehensive constraint system based on the unique post-earthquake environment and
technical requirements for UAV flight[33]. The system encompasses four dimensions: path
structure constraints, physical performance constraints, regional safety constraints, and
timeliness constraints. This ensures the planning solution not only meets mathematical
optimization requirements but also fulfills practical rescue needs.

1. Path structure constraints

Path structure constraints ensure the integrity of rescue missions and the continuity of routes,
serving as fundamental constraints in path planning. The starting point departure constraint
guarantees that every drone departs from a designated logistics hub, mathematically expressed
as:

foj =1 Vae{l,2,...,N},seS
J

The constraint S on the starting point set ensures all drones can take off for rescue missions.
The arrival constraint guarantees each drone ultimately reaches the designated disaster

site[34].

foe =1 Va
This indicates the drone's target destination, ensuring rescue supplies are delivered precisely
to the intended area. The intermediate node flow balance constraint guarantees path continuity
and loop-free operation, preventing any stops or loops at intermediate nodes.

ngc:Zx; VkeSUE,Va
i j

This constraint ensures that the UAV immediately moves to the next node after completing the
current node task, thus improving rescue efficiency[35].

2. Physical performance constraints

Physical performance constraints account for the actual flight capabilities and hardware
limitations of the UAV. The flight speed constraint defines the maximum allowable flight speed
of the UAV:

Vi<v  V(ij),Va

The flight v, time constraint is determined based on the selected drone model (e.g., the DJI

Matrice350 RTK has a maximum speed of 23 m/s). This constraint takes into account the
battery's endurance[36].

D<T. Va
@)

The maximum 1., 1., endurance of the drone is approximately 55 minutes for the
Matrice350 RTK under full load conditions. Flight altitude constraints ensure flight safety:

B <H <h_. V(i j),Va
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This constraint prevents the drone from flying too low (collision risk) or too high (signal loss
risk), typically setting a minimum safe altitude of 30 meters above the ground and a maximum
flight altitude of 500 meters.

3. Regional security constraints
Regional safety constraints are critical requirements in post-earthquake environments, directly
impacting drone flight safety. The no-fly zone regulations in high-risk areas prohibit all flight
paths from crossing hazardous zones.

x; =0 if(i,j)nM#0
This represents M M the set of all high-risk areas (e.g,, fire, collapse, chemical spill zones). The
dynamic risk zone constraint accounts for the impact of aftershocks and secondary disasters.

x;(1)=0 if R,(1)>R

ij
The risk R, (¢) R, (¢) ¢ value (i,/) t at (i, /) the moment path is indicated, which can be
dynamically updated based on the aftershock prediction model and real-time monitoring data.

The communication support constraint ensures the drone remains within a controllable range
at all times.

di <d. Y(i,j),Va

The maximum dc dc communication range is approximately 7-10 kilometers for conventional
drones.
4. Time-bound constraints

The timeliness constraint reflects the urgency of post-earthquake rescue. The golden rescue
time constraint requires that supplies be delivered within 72 hours.

D 1i<72h Va

(i.7)
The urgency priority constraint ensures that high urgency areas are prioritized for rescue:

ZZx; -U,z2U,, VeekE,
a (i,j)

This represents U, U, €the €urgency £, level E,of affected points, forming a set of high-priority
disaster sites. The time window constraint considers the optimal rescue timing for different
affected points.

t,e[I™ 1™ VeekE

The earliest 7™ T™ T™ T™ and €the latest €rescue time of the disaster site are indicated by

and.
5. Load capacity constraints

The payload capacity constraint considers the material transportation capability of the UAV.
The weight constraint limits the weight of materials transported in a single mission.

ng Yi<W_ . Va

This W, indicates W, the € maximum W_, € payload W, capacity of the drone for delivering

supplies to disaster areas. The volume constraint limits the total volume of transported
materials.

Zve -y <V Va
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This indicates V, V, the volume €€of supplies V.., V.. delivered to disaster areas, which is the

maximum capacity of the drone.

This constraint system ensures both feasibility and safety of path planning across multiple
dimensions, providing clear boundary conditions for subsequent algorithm implementation.
The comprehensive design of this constraint framework not only maintains the rigor of the
mathematical model but also guarantees the applicability and reliability of the planning
solution in real-world rescue scenarios. This establishes a solid foundation for the algorithm
design and simulation validation detailed in next Section [37].

3. UAV Path Planning Based on Improved Ant Colony Optimization (IACO)
Algorithm

Building upon the multi-objective optimization model and constraint framework developed in
Section 3.2, and considering the critical characteristics of post-earthquake rescue scenarios—
prioritizing urgency and dynamic constraint adaptation—we propose targeted enhancements
to the traditional Ant Colony Optimization (ACO) algorithm. This results in the Improved Ant
Colony Optimization (IACO) algorithm, which integrates disaster prediction, environmental
constraints, and task adaptation. Simulation experiments validate IACO's effectiveness in post-
earthquake UAV path planning. The specific implementation details are as follows:

3.1. Improving the Core Mechanism Design of Ant Colony Optimization (IACO)
Algorithm

The traditional ACO algorithm has some defects in post-earthquake scene, such as single
heuristic information, easy saturation of pheromone, and poor adaptability of multi-constraint.
This paper improves the algorithm from three aspects, such as constructing composite heuristic
function, updating strategy of dynamic pheromone, and mediation mechanism of multi-
constraint conflict, and forms the core logic of the algorithm suitable for post-earthquake
rescue[38].

Breaking away from the conventional ACO's reliance on the singular guidance of "inverse (D)
distance(E)," this (£)approach (H,-)incorporates (H,-)the urgency of quantized requirements,

environmental passability, and terrain elevation costs from Section 3.1.3 into the heuristic
function. This creates a multi-factor collaborative guidance mechanism that ensures path
planning simultaneously meets the requirements of "timeliness, safety, and task priority." The
specific formula is as follows:

+w, D +wy - (1-E;)+w, -

n; =m-
ij+‘9 .

In addition, the weight distribution (#;—}) (W1 —w,)was determined by the analytic hierarchy
process (AHP) combined W =03with the W=03w=04priority of w=04w,=0.2post w,=0.1-
earthquake reliefw; =0.2, in W, =0.1which the "golden 72 hours" took (distance cost), (demand

urgency), (environmental safety), (altitude cost), and the priority was to ensure the delivery of
materials to high-demand areas.

The hybrid heuristic function is integrated into the ant's state transition decision, expressed as:
a B
pk(t) _ |:Ti/' (t)J [’711]
i P
Zseallowedk I:TU (t):| ’ [ﬂis ]ﬂ
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The pheromone tqj(t) i concentration /i from a=1.2the time a=1.2node to the node is
(pheromone A =3.5 importance coefficient #=3.5, controlling the balance between dallowed,

exploration kand utilization @loned, of kthe algorithm), (heuristic information importance

coefficient, strengthening the guiding role of the demand and environment); the feasible
neighbor node set of the ant is (excluding the visited node and high-risk no-fly zone).

To solve the problems of easy saturation and slow convergence of traditional ACO, a three-layer
pheromone update mechanism of "global volatilization + elite feedback + demand weighting"
is designed, which avoids the algorithm falling into local optimum and strengthens the guidance
of high-demand path.

After each iteration, all pheromone on the path is fixed proportion volatilization, the formula is:

7 (1+1)=(1-p)-7; (1)
The volatility o =0.12 coefficient surpasses that 0.1 of traditional 0.1 ACO, which enhances
the algorithm's dynamic exploration capability and adapts to emergencies like post-earthquake
aftershocks and secondary disasters.
In each iteration, elite ants that satisfy the criteria of "path length < 80% of average length, no
collision risk, and coverage of high-demand nodes = 3" are selected, with additional pheromon
e added to their paths. The formula is:

ry(t+1)=ry,(t+l)+%

e

The elite Q =130pheromone intensity is L, higher than L, that of ordinary ants. The path length
of elite ants (unit: m) is used to accelerate the convergence ofhigh-quality paths.

For paths passing through (Dj 2 4) "high-demand nodes", The formula is:
7, (t+1)=7,(¢t+1)-(1+02-D,)

The mechanism guides the ants to choose the path of high demand area first, and realizes the
dynamic binding of "demand priority-path planning."

To ensure the planned path meets both feasibility and safety requirements, this study
implements a three-tiered multi-constraint conflict resolution mechanism integrating Section
3.2.3's physical performance constraints (speed, endurance, altitude) with regional safety
constraints (no-fly zones, risk zones). During the pre-detection phase, the system employs an
AABB bounding box collision detection method (compatible with irregular obstacles like 3D
structures and mountains) to conduct multi-dimensional feasibility verification of candidate
paths. The verification includes: 1) Spatial safety validation: Ensuring the minimum distance
between the path and obstacles (e.g., buildings, mountains) meets a 20m safety threshold, and
avoiding high-risk no-fly zones (e.g., areas with wind speeds exceeding the drone's maximum
wind resistance of 12m/s, or regions with secondary disaster risk level 24);

2) Physical performance validation: Assessing whether the remaining endurance time (55
minutes under full payload) and altitude changes (<0.8m/s maximum climb rate) meet
operational requirements. If any validation fails, the path is marked as "unfeasible" and
excluded from the drone's viable neighbor node set.

During the dynamic avoidance phase, when the algorithm encounters local trapping scenarios
(e.g., dense building clusters or multiple no-fly zones overlapping to reduce viable neighbor
nodes to <3), the "virtual sub-target" compensation mechanism activates. Using the current
node-target disaster point line as the reference axis, a virtual node is generated at 200m from
the current node and 30m above terrain elevation. This virtual node is incorporated into the
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viable neighbor set, enabling path breakthrough through "step-by-step guidance" to prevent
algorithmic convergence failure due to local constraints[39].

During the path correction phase, the initially planned route undergoes smoothing and
optimization. If the path exhibits vertical fluctuations exceeding 50 meters (which surpasses
the drone's maximum climbing capability), the system applies k-order B-spline curves[40].

P)=31, Nk ()R
The system N,-,k(u)kemploys P ka B-spline F, basis function to smooth path segments,

ensuring elevation gradients remain <0.5m/m. It merges redundant nodes (adjacent nodes
within 50m without constraint differences) to reduce path length without compromising safety,
optimizing for endurance constraints. This three-tier mechanism—combining preventive
measures, real-time mediation,and post-incident optimization—effectively resolves multi-
constraint conflicts, guaranteeing safe and efficient drone operations in post-earthquake
complex environments[41].

3.2. Algorithm Simulation Experiment Design

To validate the effectiveness of the Improved Ant Colony Optimization (IACO) algorithm in
post-earthquake UAV rescue logistics path planning, this study developed a simulation
environment on MATLAB R2023a platform. Using Section 3.1 disaster assessment data and
Section 3.2 constraint system as inputs, we designed a three-tier experimental framework
comprising "basic performance verification, multi-scenario comparison, and constraint
sensitivity analysis" to comprehensively evaluate the algorithm's efficiency, safety, and task
adaptability.

The experimental geographical environment is based on the typical geomorphological features
of the high-frequency earthquake zones in western China, such as the Longmenshan fault zone
in Sichuan and the eastern section of the Nantian Mountains in Xinjiang. A
1800mx1800mx200m (XxYxZ) three-dimensional post-earthquake scene model is
constructed.

Urban architectural complexes and the distribution of disaster areas

(including mountainous regions and no-fly zones)

Fig 4. Post-Earthquake Environmental Simulation Map

The simulation covers 320 buildings ranging from 10 to 130 meters in height, with partial
collapse structures modeled after the earthquake. It includes three mountainous terrain areas
reaching 200 meters in elevation, slopes between 15° and 30°, and eight high-risk no-fly zones
measuring 100-300mx100-300m D x50-120m, corresponding to secondary disaster zones
such as fire areas and chemical spill zones. A material distribution center and five disaster-
affected endpoints are established, with their coordinates determined by post-earthquake
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population density distribution, assigned urgency levels of 2.1, 3.5, 4.2, 3.8, and 4.7 respectively.
As shown in the figure 4.

Table 5. Distribution of Urgency Degree for Disaster-Affected Sites

order . . .
number Coordinate position urgency of l)z need area type Supplies
1 (450, 600) 4.7 hospital first aid medicine, blood
2 (1200, 900) 4.2 school Food, drinking water
3 (900, 1500) 3.8 residential quarters Tents, warm supplies
4 (300, 1200) 3.5 community Emergency lighting
equipment
5 (1500, 400) 2.1 mlldlya(:;rlnaged General supplies

The drone parameters were selected from the DJI Matrice350 RTK model, a standard choice for
post-earthquake rescue operations. Its physical specifications include: maximum flight speed
of 23 m/s, full-load endurance of 55 minutes, maximum wind resistance of 12 m/s, minimum
flight altitude of 30m (above ground), and maximum climb rate of 0.8 m/s, ensuring the
simulation closely mirrors real rescue scenarios. The D]I Matrice350 RTK drone was chosen for
its post-earthquake rescue applications, with parameters referencing its official technical
specifications as follows:

Table 6. Reference for DJI Matrice 350 RTK Drone Parameters

Parameter category Parameter name short-cut process

physical property ceiling altitude 23m/s
full load endurance 55min

maximum load 15kg
maximum wind resistance 12m/s

flight constraint minimum flight altitude 30m
maximum altitude 500m
maximum climb ratio 0.8m/s

ability to communicate maximum communication distance 10km

Building upon the traditional ant colony algorithm, this study introduces a multi-factor
composite heuristic function that integrates material urgency, environmental passability, and
terrain elevation costs to comprehensively guide the path search process. The proposed
improved ant colony algorithm (IACO) incorporates a dynamic pheromone update mechanism,
combining global volatilization, elite ant strategies, and demand weight feedback to effectively
balance exploration and exploitation capabilities while preventing premature convergence.

In this study's MATLAB simulation system, the IACO algorithm serves as the core path planning
method. By introducing a multi-factor heuristic function and a dynamic pheromone update
mechanism, it significantly enhances the performance of the traditional ant colony algorithm in
complex post-earthquake environments. The experimental simulation results are shown in the
figure below:

Simulation results show that IACO algorithm is superior to traditional methods in path length,
convergence speed and task completion rate, especially in high-demand priority areas, which
provides reliable path planning support for post-earthquake UAV material delivery.
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Fig 6. Path Generated by the AICO Algorithm Based on Urgency Degree
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