The Study on the Multi-Factor Influences on Hydraulic Fracturing Expansion Based on Numerical Simulation
DOI:
https://doi.org/10.54691/f2164q42Keywords:
Hydraulic Fracturing; Fracture Propagation; Young's Modulus; Poisson's Ratio; Brittleness Index; Horizontal Stress Difference; Numerical Simulation.Abstract
With the development of unconventional oil and gas resources, hydraulic fracturing technology has played a crucial role in the exploitation of shale gas, tight oil, and other reservoirs. The expansion morphology of fractures significantly impacts the fracturing effectiveness, and the geometric characteristics of the fractures are influenced by rock mechanical parameters and geological conditions. This study systematically investigates the effects of Young's modulus, Poisson's ratio, brittleness index, and horizontal stress difference on the fracture propagation path, width, and length in hydraulic fracturing, using numerical simulation methods. The simulation results indicate that Young's modulus is closely related to fracture stiffness, with higher values leading to reduced fracture width and increased length. Poisson's ratio affects the deformation behavior of fractures, with larger Poisson's ratios causing more uniform fracture deformation. When the brittleness index is higher, fractures tend to adopt a more elongated shape. The horizontal stress difference influences the directional propagation of fractures, with larger stress differences resulting in more linear fracture shapes. This study provides theoretical support for fracture design and fracturing parameter optimization in hydraulic fracturing operations, aiming to improve fracturing efficiency and optimize oil and gas recovery.
Downloads
References
[1] Bajpai, V., & Singh, R. (2013, 2013/01/01/). Brittle damage and interlaminar decohesion in orthogonal micromachining of pyrolytic carbon. International Journal of Machine Tools and Manufacture, 64, 20-30. https://doi.org/10.1016/j.ijmachtools.2012.07.007.
[2] Bastola, S., & Chugh, Y. P. (2015). Shear Strength and Stiffness of Bedding Planes and Discontinuities in the Immediate Roof Rocks Overlying the No 6 Coal Seam in Illinois. 13th ISRM International Congress of Rock Mechanics.
[3] Chen, B., Li, S., & Tang, D. (2025, 2025/04/15/). Numerical simulation study on hydraulic fracture propagation of multi-cluster fracturing of horizontal well in deep fractured coal seams. Engineering Fracture Mechanics, 318, 110983. https://doi.org/10.1016/j.engfracmech.2025.110983.
[4] Chen, H., Wei, C., Lou, X., Song, H., Pan, Y., Yang, P., Guan, J., & Wang, S. (2023, 2023/07/01). Numerical Simulation of Fracture Initiation and Propagation in Oil Shale Horizontal Wells. Chemistry and Technology of Fuels and Oils, 59(3), 534-550. https://doi.org/10.1007/s10553-023-01554-0.
[5] Chen, Z., Jeffrey, R. G., Zhang, X., & Kear, J. (2016). Finite-Element Simulation of a Hydraulic Fracture Interacting With a Natural Fracture. SPE Journal, 22(01), 219-234. https://doi.org/10. 2118 /176970-pa.
[6] Choo, L. Q., Zhao, Z., Chen, H., & Tian, Q. (2016, 2016/06/01/). Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method. Computers and Geotechnics, 76, 12-22. https://doi.org/10.1016/j.compgeo.2016.02.011.
[7] Detournay, E. (2004). Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks. International Journal of Geomechanics, 4(1), 35-45. https://doi.org/10.1061/(ASCE)1532-3641 (2004) 4:1(35).
[8] Dong, Y., Tian, W., Li, P., Zeng, B., & Lu, D. (2021, 2021/12/01/). Numerical investigation of complex hydraulic fracture network in naturally fractured reservoirs based on the XFEM. Journal of Natural Gas Science and Engineering, 96, 104272. https://doi.org/10.1016/j.jngse.2021.104272.
[9] Gong, X., Jin, Z., Ma, X., Liu, Y., Li, G., & Bian, Y. (2025, 2025/03/01). Simulation Investigation of Hydraulic Fracture Propagation Patterns at Lithological Interfaces Based on the Phase-Field Method. Rock Mechanics and Rock Engineering, 58(3), 2803-2828. https://doi.org/10. 1007/ s00603-024-04258-x.
[10] Guipu, J., Hui, Z., Bin, F., & Shuo, H. (2024, 2024/09/01). Influence of Perforation on Fracture Initiation in Horizontal Wells and Parameter Optimization. Chemistry and Technology of Fuels and Oils, 60(4), 910-919. https://doi.org/10.1007/s10553-024-01753-3.
[11] Guo, J., Luo, B., Lu, C., Lai, J., & Ren, J. (2017, 2017/12/01/). Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method. Engineering Fracture Mechanics, 186, 195-207. https://doi.org/10.1016/j.engfracmech.2017.10.013.
[12] Hu, Y., Li, X., Zhang, Z., He, J., & Li, G. (2021). Numerical modeling of complex hydraulic fracture networks based on the discontinuous deformation analysis (DDA) method. Energy Exploration & Exploitation, 39(5), 1640-1665. https://doi.org/10.1177/0144598720981532.
[13] Hu, Y., Wang, Y., Wang, Q., Zhao, J., Zhu, J., Li, X., & Yang, Y. (2025). The propagation laws of hydraulic fractures under the influence of natural fracture zones. Physics of fluids, 37(1). https:// doi. org/10.1063/5.0244800.
[14] Huang, L., He, R., Yang, Z., Tan, P., Chen, W., Li, X., & Cao, A. (2023, 2023/02/01/). Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation. Engineering Fracture Mechanics, 278, 109020. https://doi. org/10. 1016/j.engfracmech.2022.109020.
[15] Ismail, A., & Azadbakht, S. (2024). A comprehensive review of numerical simulation methods for hydraulic fracturing. International Journal for Numerical and Analytical Methods in Geomechanics, 48(5), 1433-1459. https://doi.org/10.1002/nag.3689.
[16] Li, J., Dong, S., Hua, W., Yang, Y., & Li, X. (2019). Numerical Simulation on Deflecting Hydraulic Fracture with Refracturing Using Extended Finite Element Method. Energies, 12(11), 2044. https:// www.mdpi.com/1996-1073/12/11/2044.
[17] Li, M., Wu, J., Li, J., Zhuang, L., Wang, S., & Zhang, F. (2022, 2022/11/01/). Modeling of hydraulic fracturing in polymineralic rock with a grain-based DEM coupled with a pore network model. Engineering Fracture Mechanics, 275, 108801. https://doi.org/10.1016/j. engfracmech. 2022. 108801.
[18] Li, S., & Ghosh, S. (2006, 2006/10/01). Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model. International Journal of Fracture, 141(3), 373-393. https: //doi.org/10.1007/s10704-006-9000-2.
[19] Li, X. J., Zhao, H. F., Xu, K. Q., He, Y. L., Wang, C. W., & Yao, W. J. (2023, 2023/01/01). A review on the application of cohesive zone model in hydraulic fracturing. IOP Conference Series: Earth and Environmental Science, 1124(1), 012073. https://doi.org/10.1088/1755-1315/1124/1/012073.
[20] Liao, J., Gou, Y., Feng, W., Mehmood, F., Xie, Y., & Hou, Z. (2020, 2020/02/01). Development of a full 3D numerical model to investigate the hydraulic fracture propagation under the impact of orthogonal natural fractures. Acta Geotechnica, 15(2), 279-295. https://doi.org/10.1007/s11440-019-00862-2.
[21] Liu, Y., Hu, Y., & Kang, Y. (2022). The Propagation of Hydraulic Fractures in a Natural Fracture Network: A Numerical Study and Its Implications. Applied Sciences, 12(9), 4738. https://doi.org/ 10. 3390/app12094738.
[22] Ni, L., Zhang, X., Zou, L., & Huang, J. (2020, 2020/10/01). Phase-field modeling of hydraulic fracture network propagation in poroelastic rocks. Computational Geosciences, 24(5), 1767-1782. https:// doi.org/10.1007/s10596-020-09955-4.
[23] Rickman, R., Mullen, M., Petre, E., Grieser, B., & Kundert, D. (2008). A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/115258-MS.
[24] Sigrist, J.-F. (2015, 10/02). Fluid-Structure Interaction: An Introduction to Finite Element Coupling. 1-283. https://doi.org/10.1002/9781118927762.
[25] Sun, K., Tan, J., & Wu, D. (2012, 2012/01/01/). The Research on Dynamic Rules of Crack Extension during Hydraulic Fracturing for Oil Shale In-Situ Exploitation. Procedia Environmental Sciences, 12, 736-743. https://doi.org/10.1016/j.proenv.2012.01.342.
[26] Turon, A., Camanho, P. P., Costa, J., & Dávila, C. G. (2006, 2006/11/01/). A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of materials, 38(11), 1072-1089. https://doi.org/10.1016/j.mechmat.2005.10.003.
[27] Zhang, D., Wu, C., Shi, Z., Li, Y., Zhao, Y., & Wu, X. (2024). A fluid–solid coupling model for hydraulic fracture of deep coal seam based on finite element method. Physics of fluids, 36(6). https://doi.org/ 10. 1063/5.0213223.
[28] Zhang, G., Guo, T., Chen, M., & Qu, Z. (2025, 2025/10/01/). Investigation of hydraulic fracture initiation and propagation behavior in glutenite reservoir using an improved global cohesive zone model. Computers and Geotechnics, 186, 107421. https://doi.org/10.1016/j. compgeo. 2025. 107 421.
[29] Zhang, H.-y., Chen, J.-b., & Wang, Y. (2023, 2023/10/01). An XFEM-based CZM Numerical Strategy for Modeling Hydraulic Fracture Propagation under Different Fracturing Schemes. Journal of Physics: Conference Series, 2594(1), 012025. https://doi.org/10.1088/1742-6596/2594/1/ 0120 25.
[30] Zhou, X., Liu, X., & Liang, L. (2024). Analysis of Factors Influencing Three-Dimensional Multi-Cluster Hydraulic Fracturing Considering Interlayer Effect. Applied Sciences, 14(12), 5330. https://www. mdpi. com / 2076-3417/14/12/5330.
[31] Zhou, Y., Jia, S., Sui, Q., Wang, W., Qin, M., & Yang, D. (2025, 2025/08/01/). Investigating the impact of natural fractures on the propagation of multi-cluster fractures using XFEM. Computers and Geotechnics, 184, 107299. https://doi.org/10.1016/j.compgeo.2025.107299.
[32] Zhou, Z.-L., Hou, Z.-K., Guo, Y.-T., Zhao, H., Wang, D., Qiu, G.-Z., & Guo, W.-H. (2024, 2024/08/22/). Experimental study of hydraulic fracturing for deep shale reservoir. Engineering Fracture Mechanics, 307, 110259. https://doi.org/10.1016/j.engfracmech.2024.110259.
[33] Zhu, H., Zhao, X., Guo, J., Jin, X., An, F., Wang, Y., & Lai, X. (2015, 2015/09/01/). Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock. Journal of Natural Gas Science and Engineering, 26, 711-724. https://doi.org/10.1016/j.jngse.2015.07.007.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Journal of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






